Peste porcine africaine

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Ne doit pas être confondu avec Peste porcine.
Le rougissement du pavillon de l'oreille est l'un des symptômes de la peste porcine africaine (PPA) chez les cochons.

La peste porcine africaine (PPA) est une maladie animale qui touche les porcs, mais aussi les sangliers[1], les phacochères, les potamochères et les tiques, qui en sont le vecteur probable. La PPA est endémique dans le milieu naturel en Afrique subsaharienne, avec des cycles d'infection impliquant les tiques (du genre Ornithodoros), les phacochères et les potamochères.

La PPA est une maladie virale, dont l'agent est Asfivirus, un grand virus à ADN double-brin qui se réplique dans le cytoplasme des cellules infectées. Asfivirus et Faustovirus (en) sont les seuls représentants de la famille des Asfarviridae (en)[2]. Asfivirus est le seul virus à ADN transmis par des arthropodes. Attaquant certaines cellules du système immunitaire, il cause des hémorragies mortelles chez les porcs domestiques. Certains isolats sont retrouvés dans tous les organes du porcelet seulement 30 h après l'inoculation[3] et ils peuvent provoquer leur mort en à peine une semaine. Chez toutes les autres espèces et sous-espèces, le virus ne provoque aucune maladie apparente.

Le virus ne menace pas la santé humaine, mais étant hautement mortel pour les cochons et des espèces-gibier, il est source d'importants dégâts socio-économiques. C'est donc une maladie à enjeu vétérinaire et à déclaration obligatoire. Une seule détection faite dans un pays peut justifier des interdictions d'exporter vers d'autres pays.

La PPA est détectée depuis plusieurs décennies en Sardaigne chez des sangliers et des porcs semi-sauvages. Au début des années 2000 pour la première fois des sangliers sont touchés, et en grand nombre, de même que des porcs en Europe de l’Est (Pologne, Lituanie, Lettonie, Estonie, République tchèque, Russie, Biélorussie, Ukraine, Moldavie), faisant craindre qu'ils ne véhiculent le virus vers toute l'Europe, et que des chasseurs et/ou leurs chiens ou des charcuteries contaminées[4] puissent involontairement le transporter[1]. Aucun vaccin n'étant attendu avant 2027, des scientifiques tentent de comprendre pourquoi et comment cette maladie mortelle persiste chez le sanglier et comment limiter si cela est possible la circulation du virus[1].

Histoire[modifier | modifier le code]

Elle a été décrite pour la première fois lorsque des colons européens ont introduit des porcs domestiques dans les régions affectées, ce qui en fait un bon exemple de maladie émergente.

La peste porcine africaine était limitée au continent dont elle porte le nom jusqu'en 1957, quand elle a été signalée à Lisbonne, au Portugal. Une autre éruption y a eu lieu en 1960. Après ces introductions, la maladie s'est installée dans la péninsule ibérique et des éruptions sporadiques ont eu lieu en France, en Belgique et dans d'autres pays d'Europe dans les années 1980. L'Espagne et le Portugal ont réussi à éradiquer la maladie au milieu des années 1990 grâce à une politique d'abattage.

La maladie a traversé l'Océan Atlantique et des éruptions ont été signalées dans plusieurs îles des Caraïbes, notamment en République dominicaine. En 1971, le régime cubain a dû faire abattre 500 000 porcs pour éviter une épizootie à l'échelle nationale. Cet épisode a été qualifié d'« événement le plus inquiétant » de 1971 par l'Organisation des Nations unies pour l'alimentation et l'agriculture (FAO). Il a été avancé que le virus avait été introduit dans le pays par des opposants anti-castristes, avec le soutien tacite de membres de la CIA, pour déstabiliser l'économie du pays et encourager l'opposition interne à Fidel Castro. Le virus leur aurait été fourni depuis une base de l'armée américaine de la zone du canal de Panama par un agent américain anonyme[5]. Cependant l'accusation de complot n'est apparue que six ans après les faits, dans le journal Newsday, citant des sources invérifiables[6],[7].

D'importantes épidémies en Afrique sont régulièrement déclarées à l'Organisation mondiale de la santé animale (OIE, ex-Office international des épizooties).

La plus récente épizootie non-africaine s'est déclaré début 2007 en Géorgie. De là elle a gagné l'Arménie, l'Azerbaïdjan, l'Iran et la Russie. Le virus a été signalé en Lituanie en 2014 (1ère apparition dans l'Union européenne) puis s'est répandu dans les États baltes (alors qu'il progressait aussi en Extrême-Orient, décimant de nombreux élevages de porcs). L'été 2017, il était en République tchèque puis en novembre 2017 près de Varsovie en Pologne, inquiétant l'Allemagne et le Danemark deux grands producteurs de porcs.

Sous l'égide de l'Afsca en Europe les mesures sanitaires ont été renforcées, et il est interdit d'importer de la viande de porc ou de sanglier ou des produits de viande de porc ou de sanglier d'un pays ou de zones où sévissent la PPA vers des zones indemnes. Les visites d'exploitations porcines et tout contact avec des porcs dans les 72h suivant le retour d’une zone à risque sont également interdits[8]. La chasse au sanglier n'est pas interdite dans les pays où le virus est endémique, mais dans certains pays (belgique par ex) les chasseurs ne doivent pas utiliser de chien au cours de la chasse et diverses mesures de désinfections et nettoyage sont ensuite obligatoire ;

Symptômes[modifier | modifier le code]

Le gonflement autour des reins et les hémorragies musculaires visibles ici sont typiques des porcs atteints de la maladie.

Les symptômes de la maladie sont très proches de ceux de la peste porcine classique  ; Seuls des examens de laboratoire permettent normalement de les distinguer. De plus dans les deux cas, les symptômes cliniques et visuels varient considérablement selon les souches et leurs virulence[1]. De même chez le porc, comme chez le sanglier selon la souche l'animal sera porteur sain (sans maladie apparente) ou pourra mourir en quelques dizaines d'heures.

Les infections aiguës dues à des souches hautement pathogènes du virus conduisent à une présentation clinique évoquant une fièvre hémorragique virale, caractérisée par[1] :

  • une déplétion prononcée des tissus lymphoïdes ;
  • une apoptose des sous-populations lymphocytaires ;
  • une altération de l'hémostase ;
  • une dégradation des fonctions immunitaires.

On admet généralement qu'un grande partie des lésions résulte indirectement des effets des cytokines produites par les monocytes et des macrophages infectés, plutôt que des effets directs du virus sur les cellules[1].

Structure du virus et réplication[modifier | modifier le code]

Macrophage en début d'infection par le virus.

L'agent de la peste porcine africaine est un grand virus à ADN double-brin (groupe I) possédant un génome d'au moins 150 gènes (le nombre de gènes varie légèrement selon les isolats viraux considérés). Il ressemble aux autres grands virus à ADN comme les poxvirus, les iridovirus et les mimivirus. Comme dans les autres fièvres hémorragiques virales, ses principales cellules-cibles sont celles de la lignée des monocytes et macrophages.

Le virus cause chez les porcs une fièvre hémorragique avec un fort taux de mortalité (souvent proche de 100%), tout en infectant ses hôtes naturels (les phacochères, les potamochères et les tiques du genre Ornithodoros) de manière chronique et sans signe clinique[9].

Le virus code les enzymes nécessaires à la réplication et à la transcription de son génome, notamment les éléments de son système de réparation par excision de base, ses protéines structurelles et beaucoup d'autres qui ne sont pas essentielles à sa réplication, mais jouent un rôle dans sa survie et dans sa transmission.

La réplication du virus a lieu dans les régions entourant le noyau cellulaire. Sa capside icosaédrale est assemblée sur des membranes modifiées du réticulum endoplasmique. Des produits issus de polyprotéines protéolysées forment l'enveloppe entre la membrane interne et le centre nucléoprotéique. Une membrane extérieure supplémentaire est ajoutée à partir de particules de la membrane plasmique. Le virus code des protéines qui inhibent la transmission du signal des macrophages infectés et régulent ainsi l'activation des gènes de la réponse immunitaire. Il code en outre des protéines inhibant l'apoptose (la mort) des cellules infectées, ce qui facilite la production des virions. Des protéines membranaires virales possédant des similitudes avec des protéines d'adhésion cellulaire régulent l'interaction des cellules infectées et des virions extra-cellulaires avec les organes de l'hôte[2].

Génotypes[modifier | modifier le code]

En 2012, 22 génotypes avaient déjà été identifiés (sur la base des variations de la séquence de la région C-terminale du gène p72[10]). Le génotype VIII est limité à quatre pays d'Afrique orientale.

Notes et références[modifier | modifier le code]

  1. a, b, c, d, e et f Blome S, Gabriel C & Beer M (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus research, 173(1), 122-130|PDF, 9 pp
  2. a et b (en) Dixon et al., Animal Viruses: Molecular Biology, Caister Academic Press, (ISBN 978-1-904455-22-6, lire en ligne), « African Swine Fever Virus »
  3. Colgrove et al. (1969) cités par le rapport scientifique de l'EFSA de 2009
  4. le virus persiste dans certaines denrées alimentaires à base de produits et/ou viande de porc contaminés (charcuteries notamment) ; source AFSCA [http://www.afsca.be/santeanimale/pesteporcineafricaine/Peste porcine africaine , Fiche consultée 12 mars 2018
  5. (en) Howard Zinn, A People's History of the United States, chapitre 20.
  6. (en) Critical Reviews in Microbiology, 25(3):173–227 (1999)
  7. (en) Mark Wheelis, A Short History of Biological Warfare and Weapons
  8. AFSCA [http://www.afsca.be/santeanimale/pesteporcineafricaine/Peste porcine africaine , Fiche consultée 12 mars 2018
  9. Galindo, Inmaculada; Alonso, Covadonga. 2017. "African Swine Fever Virus: A Review." Viruses 9, no. 5: 103. |résumé
  10. Leblanc N, Cortey M, Fernandez Pinero J, Gallardo C, Masembe C, Okurut AR, Heath L, van Heerden J, Sánchez-Vizcaino JM, Ståhl K, Belák S (2012) Development of a suspension microarray for the genotyping of African swine fever virus targeting the SNPs in the C-terminal end of the p72 gene region of the Genome. Transbound Emerg Dis doi: 10.1111/j.1865-1682.2012.01359.x.

Voir aussi[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Sur les autres projets Wikimedia :

Législation européenne[modifier | modifier le code]

bibliographie[modifier | modifier le code]

  • Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrin, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; et al. Identification of a new genotype of african swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 2016.
  • Alcami, A.; Carrascosa, A.L.; Vinuela, E. Interaction of African swine fever virus with macrophages. Virus Res. 1990, 17, 93–104
  • Alcami, A.; Carrascosa, A.L.; Vinuela, E. Saturable binding sites mediate the entry of African swine fever virus into vero cells. Virology 1989, 168, 393–398
  • Alcami, A.; Carrascosa, A.L.; Vinuela, E. The entry of African swine fever virus into vero cells. Virology 1989, 171, 68–75.
  • Almazan, F.; Rodriguez, J.M.; Andres, G.; Perez, R.; Vinuela, E.; Rodriguez, J.F. Transcriptional analysis of multigene family 110 of african swine fever virus J. Virol. 1992, 66, 6655–6667.
  • Alonso, C.; Miskin, J.; Hernaez, B.; Fernandez-Zapatero, P.; Soto, L.; Canto, C.; Rodriguez-Crespo, I.; Dixon, L.; Escribano, J.M. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J. Virol. 2001, 75, 9819–9827.
  • Anderson, E.C.; Hutchings, G.H.; Mukarati, N.; Wilkinson, P.J. African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Vet. Microbiol. 1998, 62, 1–15.
  • Andres, G.; Garcia-Escudero, R.; Vinuela, E.; Salas, M.L.; Rodriguez, J.M. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. J. Virol. 2001, 75, 6758–6768.
  • Angulo, A.; Vinuela, E.; Alcami, A. Inhibition of African swine fever virus binding and infectivity by purified recombinant virus attachment protein p12. J. Virol. 1993, 67, 5463–5471.
  • Ballester, M.; Rodriguez-Carino, C.; Perez, M.; Gallardo, C.; Rodriguez, J.M.; Salas, M.L.; Rodriguez, F. Disruption of nuclear organization during the initial phase of african swine fever virus infection. J. Virol. 2011, 85, 8263–8269.
  • Basta, S.; Gerber, H.; Schaub, A.; Summerfield, A.; McCullough, K.C. Cellular processes essential for African swine fever virus to infect and replicate in primary macrophages. Vet. Microbiol. 2010, 140, 9–17.
  • Bastos, A.D.; Penrith, M.L.; Cruciere, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping field strains of african swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706.
  • Benedict, C.A.; Norris, P.S.; Ware, C.F. To kill or be killed: Viral evasion of apoptosis. Nat. Immunol. 2002, 3, 1013–1018.
  • Boshoff, C.I.; Bastos, A.D.; Gerber, L.J.; Vosloo, W. Genetic characterisation of african swine fever viruses from outbreaks in southern Africa (1973–1999). Vet. Microbiol. 2007, 121, 45–55.
  • Breese, S.S., Jr.; de Boer, C.J. Electron microscope observations of African swine fever virus in tissue culture cells. Virology 1966, 28, 420–428
  • Brun, A.; Rivas, C.; Esteban, M.; Escribano, J.M.; Alonso, C. African swine fever virus gene a179l, a viral homologue of BCL-2, protects cells from programmed cell death. Virology 1996, 225, 227–230
  • Carvalho, Z.G.; de Matos, A.P.; Rodrigues-Pousada, C. Association of African swine fever virus with the cytoskeleton. Virus Res. 1988, 11, 175–192.
  • Chacon, M.R.; Almazan, F.; Nogal, M.L.; Vinuela, E.; Rodriguez, J.F. The African swine fever virus IAP homolog is a late structural polypeptide. Virology 1995, 214, 670–674.
  • Cubillos, C.; Gomez-Sebastian, S.; Moreno, N.; Nunez, M.C.; Mulumba-Mfumu, L.K.; Quembo, C.J.; Heath, L.; Etter, E.M.; Jori, F.; Escribano, J.M.; et al. African swine fever virus serodiagnosis: A general review with a focus on the analyses of african serum samples. Virus Res. 2013, 173, 159–167.
  • Cuesta-Geijo, M.A.; Chiappi, M.; Galindo, I.; Barrado-Gil, L.; Munoz-Moreno, R.; Carrascosa, J.L.; Alonso, C. Cholesterol flux is required for endosomal progression of african swine fever virions during the initial establishment of infection. J. Virol. 2015, 90, 1534–1543.
  • Cuesta-Geijo, M.A.; Galindo, I.; Hernaez, B.; Quetglas, J.I.; Dalmau-Mena, I.; Alonso, C. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS ONE 2012, 7, e48853.
  • De Matos, A.P.; Carvalho, Z.G. African swine fever virus interaction with microtubules. Biol. Cell 1993, 78, 229–234.
  • Dixon, L.K.; Escribano, J.M.; Martins, C.; Rock, D.L.; Salas, M.L.; Wilkinson, P.J. Asfarviridae. In Virus Taxonomy. VIIIth Report of the ICTV; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 135–143
  • Fabregas, J.; Garcia, D.; Fernandez-Alonso, M.; Rocha, A.I.; Gomez-Puertas, P.; Escribano, J.M.; Otero, A.; Coll, J.M. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir. Res. 1999, 44, 67–73.
  • Galindo, I.; Cuesta-Geijo, M.A.; Hlavova, K.; Munoz-Moreno, R.; Barrado-Gil, L.; Dominguez, J.; Alonso, C. African swine fever virus infects macrophages, the natural host cells, via clathrin and cholesterol-dependent endocytosis. Virus Res. 2015, 200, 45–55
  • Galindo, I.; Hernaez, B.; Berna, J.; Fenoll, J.; Cenis, J.L.; Escribano, J.M.; Alonso, C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on african swine fever virus replication. Antivir. Res. 2011, 91, 57–63.
  • Galindo, I.; Hernaez, B.; Diaz-Gil, G.; Escribano, J.M.; Alonso, C. A179l, a viral BCL-2 homologue, targets the core BCL-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for bid and noxa. Virology 2008, 375, 561–572.
  • Galindo, I.; Hernaez, B.; Munoz-Moreno, R.; Cuesta-Geijo, M.A.; Dalmau-Mena, I.; Alonso, C. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012, 3, e341.
  • Galindo, Inmaculada; Alonso, Covadonga. 2017. "African Swine Fever Virus: A Review." Viruses 9, no. 5: 103. |résumé
  • Garcia-Beato, R.; Salas, M.L.; Vinuela, E.; Salas, J. Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 1992, 188, 637–649.
  • Gomez-Puertas, P.; Rodriguez, F.; Oviedo, J.M.; Brun, A.; Alonso, C.; Escribano, J.M. The african swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 1998, 243, 461–471.
  • Heath, C.M.; Windsor, M.; Wileman, T. Aggresomes resemble sites specialized for virus assembly. J. Cell Biol. 2001, 153, 449–455.
  • Hernaez, B.; Alonso, C. Dynamin and clathrin-dependent endocytosis in African swine fever virus entry. J. Virol. 2010, 84, 2100–2109.
  • Hernaez, B.; Cabezas, M.; Munoz-Moreno, R.; Galindo, I.; Cuesta-Geijo, M.A.; Alonso, C. A179l, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr. Mol. Med. 2013, 13, 305–316.
  • Hernaez, B.; Escribano, J.M.; Alonso, C. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera. Virology 2006, 350, 1–14.
  • Hernaez, B.; Guerra, M.; Salas, M.L.; Andres, G. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathog. 2016, 12, e1005595.
  • Hernaez, B.; Tarrago, T.; Giralt, E.; Escribano, J.M.; Alonso, C. Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J. Virol. 2010, 84, 10792–10801.
  • Hurtado, C.; Bustos, M.J.; Sabina, P.; Nogal, M.L.; Granja, A.G.; Gonzalez, M.E.; Gonzalez-Porque, P.; Revilla, Y.; Carrascosa, A.L. Antiviral activity of lauryl gallate against animal viruses. Antivir. Ther. 2008, 13, 909–917.
  • Jouvenet, N.; Monaghan, P.; Way, M.; Wileman, T. Transport of african swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J. Virol. 2004, 78, 7990–8001.
  • Kleiboeker, S.B.; Scoles, G.A.; Burrage, T.G.; Sur, J. African swine fever virus replication in the midgut epithelium is required for infection of ornithodoros ticks. J. Virol. 1999, 73, 8587–8598.
  • Klionsky, D.J. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222.
  • Lacasta, A.; Ballester, M.; Monteagudo, P.L.; Rodriguez, J.M.; Salas, M.L.; Accensi, F.; Pina-Pedrero, S.; Bensaid, A.; Argilaguet, J.; Lopez-Soria, S.; et al. Expression library immunization can confer protection against lethal challenge with african swine fever virus. J. Virol. 2014, 88, 13322–13332.
  • Lozach, P.Y.; Mancini, R.; Bitto, D.; Meier, R.; Oestereich, L.; Overby, A.K.; Pettersson, R.F.; Helenius, A. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 2010, 7, 488–499.
  • Montgomery, R.E. On a form of swine fever occurring in british east Africa (Kenya Colony). J. Comp. Pathol. Ther. 1921, 34, 159–191.
  • Mottola, C.; Freitas, F.B.; Simoes, M.; Martins, C.; Leitao, A.; Ferreira, F. In vitro antiviral activity of fluoroquinolones against African swine fever virus. Vet. Microbiol. 2013, 165, 86–94.
  • Munoz-Moreno, R.; Barrado-Gil, L.; Galindo, I.; Alonso, C. Analysis of HDAC6 and BAG3-aggresome pathways in African swine fever viral factory formation. Viruses 2015, 7, 1823–1831.
  • Netherton, C.L.; Parsley, J.C.; Wileman, T. African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153. J. Virol. 2004, 78, 10825–10828.
  • Nogal, M.L.; Gonzalez de Buitrago, G.; Rodriguez, C.; Cubelos, B.; Carrascosa, A.L.; Salas, M.L.; Revilla, Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J. Virol. 2001, 75, 2535–2543.
  • O’Donnell, V.; Risatti, G.R.; Holinka, L.G.; Krug, P.W.; Carlson, J.; Velazquez-Salinas, L.; Azzinaro, P.A.; Gladue, D.P.; Borca, M.V. Simultaneous deletion of the 9gl and uk genes from the African swine fever virus georgia 2007 isolate offers increased safety and protection against homologous challenge. J. Virol. 2017, 91, e01760-16.
  • OIE-WAHID. World Animal Health Information Database (Wahid) [Database on the Internet]. World Organisation for Animal Health (OIE), 2017. [Cited World Animal Health Information System (WAHIS)]. URL:http://www.Oie.Int/wahis/public.Php?Page=home
  • Orvedahl, A.; Alexander, D.; Talloczy, Z.; Sun, Q.; Wei, Y.; Zhang, W.; Burns, D.; Leib, D.A.; Levine, B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007, 1, 23–35.
  • Parker, J.; Plowright, W.; Pierce, M.A. The epizootiology of african swine fever in Africa. Vet. Rec. 1969, 85, 668–674.
  • Pasqual, G.; Rojek, J.M.; Masin, M.; Chatton, J.Y.; Kunz, S. Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog. 2011, 7, e1002232
  • Pejsak, Z.; Truszczynski, M.; Niemczuk, K.; Kozak, E.; Markowska-Daniel, I. Epidemiology of african swine fever in Poland since the detection of the first case. Pol. J. Vet. Sci. 2014, 17, 665–672
  • Penrith, M.L.; Vosloo, W. Review of african swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2009, 80, 58–62.
  • Popescu, L.; Gaudreault, N.N.; Whitworth, K.M.; Murgia, M.V.; Nietfeld, J.C.; Mileham, A.; Samuel, M.; Wells, K.D.; Prather, R.S.; Rowland, R.R. Genetically edited pigs lacking cd163 show no resistance following infection with the African swine fever virus isolate, georgia 2007/1. Virology 2017, 501, 102–106
  • Quetglas, J.I.; Hernaez, B.; Galindo, I.; Munoz-Moreno, R.; Cuesta-Geijo, M.A.; Alonso, C. Small Rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection. J. Virol. 2012, 86, 1758–1767.
  • Ramiro-Ibanez, F.; Ortega, A.; Brun, A.; Escribano, J.M.; Alonso, C. Apoptosis: A mechanism of cell killing and lymphoid organ impairment during acute african swine fever virus infection. J. Gen. Virol. 1996, 77, 2209–2219.
  • Reis, A.L.; Abrams, C.C.; Goatley, L.C.; Netherton, C.; Chapman, D.G.; Sanchez-Cordon, P.; Dixon, L.K. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 2016, 34, 4698–4705.
  • Revilla, Y.; Callejo, M.; Rodriguez, J.M.; Culebras, E.; Nogal, M.L.; Salas, M.L.; Vinuela, E.; Fresno, M. Inhibition of nuclear factor kappa b activation by a virus-encoded I kappa b-like protein. J. Biol. Chem. 1998, 273, 5405–5411.
  • Rivera, J.; Abrams, C.; Hernaez, B.; Alcazar, A.; Escribano, J.M.; Dixon, L.; Alonso, C. The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J. Virol. 2007, 81, 2923–2929.
  • Rodriguez, C.I.; Nogal, M.L.; Carrascosa, A.L.; Salas, M.L.; Fresno, M.; Revilla, Y. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. J. Virol. 2002, 76, 3936–3942.
  • Rodriguez, J.M.; Salas, M.L. frican swine fever virus transcription. Virus Res. 2013, 173, 15–28.
  • Rodriguez, J.M.; Salas, M.L.; Vinuela, E. Intermediate class of mRNAs in African swine fever virus. J. Virol. 1996, 70, 8584–8589.
  • Rojo, G.; Garcia-Beato, R.; Vinuela, E.; Salas, M.L.; Salas, J. Replication of african swine fever virus DNA in infected cells. Virology 1999, 257, 524–536
  • Salas, M.L.; Andres, G. African swine fever virus morphogenesis. Virus Res. 2013, 173, 29–41.
  • Salas, M.L.; Kuznar, J.; Vinuela, E. Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology 1981, 113, 484–491.
  • Sanchez, E.G.; Quintas, A.; Perez-Nunez, D.; Nogal, M.; Barroso, S.; Carrascosa, A.L.; Revilla, Y. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 2012, 8, e1002754.
  • Sanchez-Torres, C.; Gomez-Puertas, P.; Gomez-del-Moral, M.; Alonso, F.; Escribano, J.M.; Ezquerra, A.; Dominguez, J. Expression of porcine cd163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch. Virol. 2003, 148, 2307–2323
  • Schloer, G.M. Polypeptides and structure of African swine fever virus. Virus Res. 1985, 3, 295–310
  • Stefanovic, S.; Windsor, M.; Nagata, K.I.; Inagaki, M.; Wileman, T. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J. Virol. 2005, 79, 11766–11775.
  • Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525.
  • Thomson, G.R.; Gainaru, M.D.; van Dellen, A.F. Experimental infection of warthos (Phacochoerus aethiopicus) with african swine fever virus. Onderstepoort J. Vet. Res. 1980, 47, 19–22.
  • Valdeira, M.L.; Geraldes, A. Morphological study on the entry of African swine fever virus into cells. Biol. Cell 1985, 55, 35–40.
  • Wozniakowski, G.; Kozak, E.; Kowalczyk, A.; Lyjak, M.; Pomorska-Mol, M.; Niemczuk, K.; Pejsak, Z. Current status of african swine fever virus in a population of wild boar in eastern Poland (2014–2015). Arch. Virol. 2016, 161, 189–195
  • Zhang, F.; Moon, A.; Childs, K.; Goodbourn, S.; Dixon, L.K. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits chop induction but is dispensable for these activities during virus infection. J. Virol. 2010, 84, 10681–10689.