Parallélogramme

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 26 février 2020 à 12:27 et modifiée en dernier par OrlodrimBot (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leurs milieux[1]

Un parallélogramme.

Définitions équivalentes

En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes :

  • les vecteurs et sont égaux ;
  • les vecteurs et sont égaux.

Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC)[2].

En géométrie euclidienne, sous cette même hypothèse, ces propriétés sont aussi équivalentes à :

  • le quadrilatère est non croisé et ses côtés opposés sont de même longueur deux à deux ;
  • il est convexe et ses angles opposés ont la même mesure deux à deux ;
  • ses angles consécutifs sont supplémentaires deux à deux ;
  • c'est un trapèze (non croisé) dont les bases ont même longueur.

Propriétés

Cas particuliers

Aire

L'aire d'un parallélogramme est égale à celle du rectangle de mêmes base et hauteur.

Soient la longueur d'un côté du parallélogramme et la longueur de la hauteur associée. L'aire du parallélogramme vaut :

L'aire d'un parallélogramme est aussi donnée par un déterminant.

Antiparallélogramme

Un antiparallélogramme.

Un antiparallélogramme est un quadrilatère croisé dont les côtés opposés ont la même longueur deux à deux.

Dans un antiparallélogramme, les angles opposés ont la même mesure en valeur absolue.

Équipollence et vecteurs

(C,D) et (E,F) sont équipollents à (A,B).

Il est désormais classique de définir la notion de parallélogramme à partir de celle de vecteur (voir supra) mais on peut inversement, à partir de la notion de milieu, définir (comme en introduction) celle de parallélogramme, puis celle d'équipollence de deux bipoints, et enfin celle de vecteur :

  • on appelle bipoint tout couple de points (l'ordre des points a une importance) ;
  • deux bipoints (A, B) et (C, D) sont dits équipollents si ABDC est un parallélogramme ;
La relation d'équipollence est une relation d'équivalence.
  • on appelle vecteur la classe d'équivalence du bipoint (A,B), c'est-à-dire l'ensemble des bipoints équipollents à (A,B).

On retrouve alors qu'un quadrilatère (ABCD) est un parallélogramme si et seulement si .

Voir aussi

Sur les autres projets Wikimedia :

Notes et références

  1. a et b M. Troyanov, Cours de géométrie, PPUR, 2002, p. 13.
  2. Jean Dieudonné, Algèbre linéaire et géométrie élémentaire, Hermann, , exercice 1, p. 50.