Moteur à hydrogène

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Ne doit pas être confondu avec Enrichissement du carburant par hydrogène.

Le moteur à hydrogène est un moteur à combustion interne utilisant le dihydrogène comme carburant.

Histoire[modifier | modifier le code]

Moteur à gaz horizontal Otto, de quatre chevaux de force, actionnant dans le domaine d'Ambreville (Eure) en 1868 : pompes à eau pour la ferme et le château, pompe à purin, machine à battre avec élévateur de grains, meules à concasser, hache-paille, laveur de racines, coupe-racines, cribleur de menues pailles, deux meules à affûter, tire-sacs, tarare, trieur de grains, pressoir mécanique, pompe à cidre[1].

Dans son brevet de 1799, Philippe Lebon avait prédit que son « gaz hydrogène » (du gaz de bois, dont on peut supposer qu'il contenait au moins 50 % de dihydrogène) serait « une force applicable à toutes espèces de machine ». Le gaz de houille, inventé par William Murdoch à la même époque, est nommé « gaz hydrogène carboné » puis « gaz d'éclairage » (« gas light », voire gaz de ville et gaz manufacturé) et contient 50 % de dihydrogène, 32 % de méthane, 8 % de monoxyde de carbone. Certains gaz à l'eau, à destination de l'éclairage, contiendront jusqu'à 94 % de dihydrogène (voir Usine à gaz de Narbonne).

À partir de 1804, François Isaac de Rivaz construit les premiers moteurs à gaz utilisant du gaz de houille. Il s'inspire du fonctionnement du Pistolet de Volta pour construire le premier moteur à combustion interne dont il obtient le brevet le .

En 1859, Étienne Lenoir dépose un « brevet d'un moteur à gaz et à air dilaté », un moteur à combustion interne à deux temps qui utilise le gaz de houille.

Le gaz d'éclairage est encore utilisé dans le moteur à gaz par Nikolaus Otto en 1867. Les grands constructeurs automobiles, Deutz AG, Daimler AG, Mercedes-Benz et BMW, sont redevables aux innovations du moteur à gaz apportées par celui-ci et à la création de la Gasmotoren-Fabrik Deutz AG (Deutz AG), fondée par Otto en 1872.

En 1970, Paul Dieges brevette une modification des moteurs à combustion interne qui autorise la consommation d'hydrogène[2]. Le brevet indique clairement que le but de l'invention est de fournir un combustible non-polluant à l'inverse des hydrocarbures.

À partir de 1980, le constructeur automobile japonais Mazda planche sur l'application du dihydrogène aux moteurs rotatifs (Moteur Wankel) et en 1991 présente un concept de moteur rotatif à hydrogène au Salon automobile de Tokyo. En 2006, Mazda loue des véhicules Hydrogen RE aux bureaux du gouvernement nippon[3].

La BMW Hydrogen 7, présentée pour la première fois au salon de Los Angeles en novembre 2006, serait la première voiture de série fonctionnant à l'hydrogène[4].

En 2013, une Aston Martin hybride roule sur le circuit du Nürburgring, qui fonctionne à l'hydrogène comprimé, l'essence ou un mélange des deux[5].

Fonctionnement du moteur à hydrogène[modifier | modifier le code]

Principe[modifier | modifier le code]

Le moteur à hydrogène utilise le principe de la combustion du dihydrogène (H2) et du dioxygène (O2) pour laisser comme produits de l'eau (H2O) et de l'énergie.

Moteur à combustion[modifier | modifier le code]

Les moteurs à hydrogène peuvent être de deux conceptions distinctes : soit ils fonctionnent comme un moteur à combustion interne classique raccordé à un réservoir, soit ils comportent un moteur électrique branché sur une pile à combustible.

Dans tous les cas, la réaction chimique est la suivante :

2 H2 + O2 → 2 H2O + Q
Q est la quantité d'énergie libérée

Les applications peuvent être stationnaires ou embarquées (véhicules). Si le dihydrogène est pur, associé à l'oxygène prélevé dans l'air, sa combustion ne rejette que de l'eau. En théorie, si l'hydrogène est produit, de plus, à partir d'une source d'énergie non polluante, sa filière n'émet pas de polluants.

Le classique moteur à piston est peu adapté à la combustion de l'hydrogène pur. La faible densité du mélange hydrogène-air nécessite des conduits d'admission et des soupapes de grand diamètre et la course sinusoïdale du piston crée un pic de pression trop long au point mort haut pour permettre un fonctionnement en détonation[réf. souhaitée]. Des alternatives, comme la quasiturbine ou le moteur Wankel s'en accommodent mieux (par exemple, la Mazda RX-8, à essence, et son double prototype, la Mazda RX-8 Hydrogen RE, à hydrogène). En outre, la formulation du carburant peut être adaptée aux moteurs à hydrocarbures, par adjonction d'additifs au dihydrogène (voir section #Moteur mixte).

Dans l'aviation, l'utilisation du dihydrogène comme carburant, éventuellement d'origine renouvelable, est envisagée à long terme par des constructeurs, en remplacement du kérosène[6].

Pile à combustible[modifier | modifier le code]

Article détaillé : Pile à combustible.

La pile à combustible produit de l'électricité et non pas un mouvement mécanique, le terme « moteur à hydrogène » est donc usurpé. Ce qui est couramment appelé « moteur à hydrogène » est en fait un ensemble pile à combustible + moteur électrique. De plus, l'hydrogène n'est pas le seul composé apte à être utilisé dans une pile à combustible, bien qu'on les associe souvent.

Moteur mixte[modifier | modifier le code]

L'adjonction de dihydrogène aux hydrocarbures utilisés classiquement comme carburants s'est avérée efficace[7],[8],[9]. Cependant, aucun système n'est capable de produire du dihydrogène in situ tout en augmentant le rendement du moteur. Ainsi, ce type de moteur ne résout pas les problèmes que pose le stockage du dihydrogène au sein du véhicule puisqu'il nécessite aussi un réservoir de dihydrogène.

Contexte technique[modifier | modifier le code]

L'utilisation productive d'une motorisation à l'hydrogène se confronte au problème du stockage du combustible et à celui de sa production.

Production du combustible[modifier | modifier le code]

Article détaillé : Production d'hydrogène.

La production d'hydrogène est l'isolation du composé chimique, qui s'associe alors en dihydrogène, H2. Elle s'effectue à 95 % par reformage du méthane et marginalement par électrolyse de l'eau, ce second procédé étant potentiellement plus écologique (selon la provenance de l'électricité consommée), mais plus coûteux car énergivore[10].

Stockage du combustible[modifier | modifier le code]

Article détaillé : Stockage de l'hydrogène.
Réservoir d'hydrogène liquide de Linde, Museum Autovision (Altlußheim, Allemagne).

À la fin des années 2010, trois grandes voies de stockage d'hydrogène à bord d'un véhicule sont envisagées[11] :

  • le stockage comprimé gazeux (à différents niveaux de pressions) ;
  • le stockage liquide (la cryogénie, utilisée dans le domaine spatial) ;
  • le stockage moléculaire (« éponges à hydrogène »)[12],[13].

Avantages et inconvénients du système[modifier | modifier le code]

Avantages[modifier | modifier le code]

Les moteurs à hydrogène produisent uniquement de l'énergie et de l'eau. La pollution locale engendrée par ces moteurs est donc quasi nulle, ce qui permet notamment de réduire la pollution de l'air en milieu urbain. En pratique, cette pollution est « délocalisée » sur les sites de production de l'hydrogène.

Une production d'hydrogène décentralisée permettrait hypothétiquement de pallier l'intermittence de certaines énergies renouvelables (panneaux photovoltaïques sur logements particuliers, ou éoliennes, par exemple).

Inconvénients[modifier | modifier le code]

Le dihydrogène n'est pas une énergie primaire : il n'est pas disponible sous forme brute dans la nature, c'est un vecteur énergétique artificiel. Il doit donc être produit à partir d'une autre source d'énergie. Or, si l'on recourt au vaporeformage du méthane, il serait plus polluant d'utiliser des moteurs à hydrogène que des moteurs Diesel, le procédé libérant quantité de gaz à effet de serre[14]. Le procédé d'électrolyse de l'eau, au bilan carbone plus vertueux, requiert d'importantes quantités d'électricité et souffre d'un faible rendement, qui rend la voiture électrique plus rentable[14].

D'un point de vue sécuritaire, le dihydrogène est beaucoup plus inflammable et explosif que l'essence lorsqu'il est au contact d'oxygène, d'où un risque en cas de fuite. Ce risque est encore accru par les difficultés de stockage et par le caractère fuyant de la molécule, qui s'échappe à travers les joints et les matériaux[15].

Le stockage du dihydrogène au sein des véhicules pose également problème. Sous forme de gaz peu comprimé, il prendrait beaucoup trop de place pour être embarqué ; sous forme de gaz très comprimé, le risque d'auto-allumage augmente fortement, ce qui rend la maîtrise de la combustion délicate[16]. Les techniques d'absorption (rétention dans des composés chimiques) ou d'adsorption (fixation sur une molécule support) ne sont pas encore au point, malgré des progrès, et coûtent encore cher.

Le transport du dihydrogène, pour ces mêmes raisons, est deux fois plus coûteux que celui du gaz naturel, si bien que 80 % du prix à la pompe est dû au stockage, au transport et à la distribution[14]. Du fait de ces difficultés et risques, les stations d'avitaillement sont plus onéreuses à construire que leurs équivalents à hydrocarbures ou électriques[10],[17].

Aspect environnemental[modifier | modifier le code]

Souvent improprement nommé « moteur à eau », le moteur à hydrogène est généralement présenté comme moins émetteur de gaz à effet de serre qu'un moteur à hydrocarbures, puisqu'il ne dégage que de la vapeur d'eau. Cependant, le processus de production d'hydrogène lui-même dégage autant de CO2 qu'un moteur Diesel (100 gCO2/km[14]). Un moteur à hydrogène n'est donc moins polluant in fine qu'à la condition que le processus de fabrication de ce gaz et celui du moteur soient eux-mêmes moins polluants. C'est le cas, par exemple, si l'électricité utilisée dans l'électrolyse de l'eau servant à fabriquer l'hydrogène provient d'une source d'énergie non carbonée, comme l'hydraulique, le nucléaire, la géothermie, l'éolien ou le solaire. À cette condition, la fabrication de moteurs à hydrogène pourrait être une voie écologiquement pertinente, face à d'autres solutions tel le véhicule électrique[réf. nécessaire].

Notes et références[modifier | modifier le code]

  1. Louis Figuier, Les merveilles de la science, ou Description populaire des inventions modernes Livre numérique Google.
  2. (en) Paul Bertrand Dieges, « Vaporization of exhaust products in hydrogen-oxygen engine », brevet no 3844262, 29 octobre 1974.
  3. (en) Advanced Rotary Engines, Mazda.
  4. BMW Hydrogen 7, première voiture de série fonctionnant à l'hydrogène, sur moteurnature.fr
  5. « Aston Martin : l’hydrogène entre en course », Cartech, avril 2013.
  6. « Guillaume Faury, patron d’Airbus : « Il ne faut jamais gâcher une bonne crise » », Le Monde, .
  7. (en) Changwei Ji et Shuofeng Wang, « Effect of hydrogen addition on combustion and emissions performance of a spark ignition gasoline engine at lean conditions », International Journal of Hydrogen Energy, vol. 34,‎ (lire en ligne).
  8. (en) Marius J. Rauckis, William J. McLean, « The Effect of Hydrogen Addition on Ignition Delays and Flame Propagation in Spark Ignition Engines », Combustion Science and Technology, vol. 19,‎ (lire en ligne).
  9. (en) Fukutani et Kunioshi, « Fuel Mixing Effects on Propagation of Premixed Flames - hydrogen plus carbon monoxide flames », Bulletin of the Chemical Society of Japan,‎ (lire en ligne [PDF]).
  10. a et b Gabriele Porrometo, « Voiture à hydrogène : quels avantages et inconvénients par rapport aux voitures électriques ? », Numerama, (consulté le 24 septembre 2019).
  11. « L'hydrogène, les nouvelles technologies de l'énergie », Clefs CEA, nos 50/51,‎ hiver 2004-2005 (ISSN 0298-6248).
  12. « Stocker les énergies renouvelables grâce à l’hydrogène solide », sur Contrepoints, (consulté le 10 novembre 2018).
  13. « L'hydrogène solide, une révolution est en cours dans la production d'énergie », sur moovely.fr, (consulté le 10 novembre 2018).
  14. a b c et d « Hydrogène – Pile à combustible : à quand le décollage ? », Auto Moto, .
  15. « Les technologies gagnent en maturité », Industrie et Technologies, (consulté le 24 septembre 2019).
  16. « Inflammation par compression adiabatique » [PDF], INERIS, .
  17. (en) « What you need to know about hydrogen fuel cell vehicles », sur Engadget, (consulté le 24 septembre 2019).

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • Edouard Freund, Paul Lucchese, L'hydrogène, carburant de l'après-pétrole ?, éditions Technip, , 358 p. (lire en ligne)
  • Pierre-Etienne Franc, Pascal Mateo, Hydrogène : la transition énergétique en marche !, éditions Gallimard, , 160 p.

Articles connexes[modifier | modifier le code]