Marcassite

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 17 juillet 2019 à 16:21 et modifiée en dernier par Géodigital (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Marcassite
Catégorie II : sulfures et sulfosels[1]
Image illustrative de l’article Marcassite
Marcassite à macles en fer de lance (sperkise), cap Blanc-Nez, Pas-de-Calais, France
Général
Numéro CAS 1317-66-4
Classe de Strunz
Classe de Dana
Formule chimique FeS2   [Polymorphes]FeS2
Identification
Masse formulaire[2] 119,975 ± 0,012 uma
Fe 46,55 %, S 53,45 %,
Couleur jaune de bronze pâle
Système cristallin orthorhombique
Classe cristalline et groupe d'espace dipyramidal - Pnnm
Clivage distinct sur {010}
Cassure irrégulière
Habitus massifs, fins, grenus, stalactitiques, botryoïdaux, réniformes, globulaires, radiés, concrétionnés, fibreux, mamelonnés.
Échelle de Mohs 6 - 6,5
Trait gris vert, gris noir, verdâtre, gris verdâtre.
Éclat métallique
Propriétés optiques
Pléochroïsme blanc crémeux {100}, jaune pâle {010}, blanc rosé {001}
Transparence opaque
Propriétés chimiques
Densité 4,8 - 4,9
Fusibilité assez facilement
Solubilité difficile dans l'acide nitrique
Propriétés physiques
Magnétisme magnétique après chauffage
Radioactivité aucune

Unités du SI & CNTP, sauf indication contraire.

La marcassite, ou marcasite, est une espèce minérale composée de disulfure de fer (FeS2), polymorphe orthorhombique de la pyrite.

Historique de la description et appellations

Histoire

La marcassite est connue dès le Paléolithique supérieur, mais aussi au Mésolithique et au Néolithique, où elle servait, comme la pyrite, à produire du feu par percussion. En effet, la faible énergie d'activation due au choc d'une pierre dure sur la marcassite suffit à déclencher la réaction d'oxydation exothermique (combustion) des particules de soufre et de fer arrachées. Ces particules incandescentes (étincelle chaude) sont immédiatement réceptionnées sur une matière végétale très fine et aérée, de type amadou, pour former une braise.

Inventeur et étymologie

Elle a été distinguée de la pyrite, avec laquelle on la confondait, en 1814 grâce aux recherches du minéralogiste français René Just Haüy. Elle fut décrite ensuite par Wilhelm Karl Ritter von Haidinger en 1845. Son nom dérive de l'ancien arabe marqachita, devenu marchasita en latin médiéval qui désignait la pyrite et les minéraux semblables.

Topotype

Non référencé pour cette espèce.

Synonymie

Le nom international, qu'il faudrait retenir, est Marcasite[3], le terme « marcassite » étant le terme francophone.

La confusion entre pyrite et marcassite explique la profusion des synonymes :

Caractéristiques physico-chimiques

Critères de détermination

La marcassite est plus facilement altérable que la pyrite surtout en atmosphère humide, dans ce cas il y a formation de sulfate ferreux et libération d'acide sulfurique, mais il semble que ce soit toujours la coexistence du couple marcassite-pyrite qui déclenche rapidement l'oxydation. Dans un tube fermé, donne un sublimé de soufre et un résidu magnétique. Faiblement attaqué par l'acide chlorhydrique à froid, mais totalement décomposé par l'acide nitrique avec libération de soufre qui surnage sur la solution. La marcassite se différencie de la pyrite par les formes cristallines, le clivage et la teinte plus claire.

Variétés et mélanges

bluéite (S.H.Emmons 182)
variété nickélifère de marcassite[11] trouvée à Denison et Drury Townships, Sudbury Dist., Ontario, Canada.
lonchidite (Breithaupt)
variété arsénifère de marcassite, trouvée à Churprinz Friedrich August Erbstolln Mine (Churprinz Mine ; Kurprinz Mine), Großschirma, Freiberg, Erzgebirge, Saxe, Allemagne ; de formule idéale Fe(S,As)2[12].
Synonymes pour cette variété :
  • kausimkies,
  • kyrosite (Breithaupt)[13], (souvent déformée en cyrosite[14]),
  • lonchandite,
  • métalonchidite (Sandberger) décrite à Bernhard Mine près Hausach (Baden) Allemagne[15].
sperkise
désigne une marcassite présentant, sur {101}, des macles en fer de lance (dites macles de la sperkise). Sperkise dérive de l'allemand Speerkies (Speer signifiant lance et Kies gravier ou caillou). Cette macle est très courante dans les marcassites d'origine crayeuse, particulièrement celles du cap Blanc-Nez (Haut-Boulonnais, crétacé).

Cristallochimie

Le groupe de la marcassite

Le groupe de la marcassite est constitué de minéraux du système cristallin orthorhombique, dont la formule générique est AX2, où A est un métal tel que le fer, le cobalt, le nickel, l’osmium, l’iridium ou le ruthénium ; X pouvant être le soufre, l’arsenic, le sélénium et ou le tellure. Ce groupe comprend :

  • l'anduoite Arséniure de ruthénium et d'osmium ;
  • la ferroselite Séléniure de fer ;
  • la frohbergite Tellurure de fer ;
  • la hastite Séléniure de cobalt ;
  • l'iridarsenite Arséniure d'iridium et de ruthénium ;
  • la kullerudite Séléniure de nickel ;
  • la marcassite Sulfure de fer ;
  • la mattagamite Tellurure de cobalt ;
  • l'omeiite Arséniure d'osmium et de ruthénium ;
  • la löllingite Arséniure de fer (elle forme un sous groupe).

Cristallographie

  • Elle cristallise dans le groupe d'espace Pnnm. Le groupe S2 forme un empilement idéalement hexagonal dans la marcassite, cubique dans la pyrite. La disposition du fer dans les octaèdres formés par le soufre, ainsi que la déformation de ces octaèdres, réduit la symétrie à orthorhombique. La structure de la marcassite est reliée à celle de la pyrrhotite comme la structure de la pyrite est reliée à celle de la galène.
  • Paramètres de la maille conventionnelle : a = 4.445 Å, b = 5.425 Å, c = 3.388 Å, Z = 2; V = 81.70 Å3
  • Densité calculée = 4,88 g/cm3

Propriétés physiques

Habitus

La marcassite donne normalement des masses micro-cristallines.

Propriétés chimiques

La marcassite est très sensible à une trop forte hygrométrie. En environnement trop humide, elle se décompose en formant de petits cristaux d'un sulfate de fer hydraté, la mélantérite, de formule FeSO4 7H2O, et de l'acide sulfurique H2SO4. Elle peut aussi s'oxyder en produisant des oxydes de fer tels que limonite et hématite et toujours de l'acide sulfurique. Les collectionneurs sont familiers de ces phénomènes d'oxydation : il est fréquent de retrouver à l'ancien emplacement d'un échantillon de marcassite un petit amas grisâtre d'oxydes de fer pulvérulents sur une tache jaunâtre d'acide sulfurique. Une parade à cette décomposition consiste à laquer ou vernir l'échantillon.

Gîtes et gisements

Gîtologie et minéraux associés

Gîtologie
  • Elle se forme dans la zone de réduction, à partir de solutions acides contenant des ions fer et sulfure.
  • On la trouve dans les roches carbonatées, carbonées mais aussi les roches métamorphiques d'origine sédimentaire.
  • Par dépôt hydrothermal de basse température.
Minéraux associés[16]

Gisements producteurs de spécimens remarquables

  • Belgique
Carrière de Beez près Namur
  • France
Carrière de la Lande, Plumelin, Morbihan[17]
Champagne crayeuse. On la trouve assez fréquemment dans la craie sous forme de sphère irrégulière, à structure interne rayonnée. Elle était localement appelée "Boule de tonnerre" du fait de la croyance que ces sphères naissaient de la foudre frappant le sol.[18]
Cap Blanc-Nez (commune d'Escalles), Pas-de-Calais, Nord-Pas-de-Calais[19]
Mine de Marsanges, Marsanges, Langeac, Haute-Loire[20]
  • Roumanie
Roşia Montanã (Verespatak ; Vöröspatak ; Goldbach), Comté d'Alba[21].
  • Tchèquie
Lomnice, Sokolov, Région de Karlovy Vary, Bohème[22].
Espagne
Mine de Reocín, Reocín, Cantabria[23].

Galerie

Modèle:Message galerie

Exploitation des gisements

Utilisations
Elle est un minéral commun quoique beaucoup moins que la pyrite, mais elle n'a aucune importance économique.

Notes et références

  1. La classification des minéraux choisie est celle de Strunz, à l'exception des polymorphes de la silice, qui sont classés parmi les silicates.
  2. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  3. « Index alphabétique de nomenclature minéralogique » BRGM.
  4. René Just Haüy, Traité de minéralogie, vol. 4, , p. 68.
  5. Albert-Auguste Cochon de Lapparent, Précis de minéralogie, Librairie Scientifique et Technique Albert Blanchard, , 420 p. (présentation en ligne), p. 380.
  6. Albert-Auguste Cochon de Lapparent, Cours de minéralogie, , p. 732.
  7. (en) Charles Palache, Harry Berman et Clifford Frondel, The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, vol. I : Elements, Sulfides, Sulfosalts, Oxides, New York (NY), John Wiley & Sons, , 7e éd., 834 p. (ISBN 978-0471192398), p. 312
  8. François Sulpice Beudant, Traité élémentaire de minéralogie, vol. 2, , p. 403.
  9. Henri Landrin, Dictionnaire de minéralogie, de géologie, et de métallurgie, , p. 358.
  10. (en) Bulletin of the United States National Museum, no 32-5, 1887, p. 138.
  11. (en) Annual report of the Ontario Department of Mines, vol. 12, 1903, p. 281.
  12. Armand Dufrénoy, Traité de minéralogie, vol. 2, Dalmont, , p. 548.
  13. Jöns Jakob Berzelius, Rapport annuel sur les progrès de la chimie présenté le 31 mars 1846 à l'Académie Royale des Sciences de Stockholm, vol. 7, , p. 188.
  14. (en) Bulletin of the United States National Museum, no 32-5, 1887, p. 54.
  15. (en) American Journal of Science, vol. 135, 1888, p. 418.
  16. (en) John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh et Monte C. Nichols, The Handbook of Mineralogy : Elements, Sulfides, Sulfosalts, vol. I, Mineral Data Publishing, .
  17. Pierre Le Roc'h et Michel Bocianowski, « La carrière de la Lande, Plumelin (Morbihan) », Le Cahier des Micromonteurs, vol. 72, no 2,‎ , p. 7-10.
  18. « pierre de tonnerre : signification et origine de l’expression », sur www.linternaute.com (consulté le )
  19. (en) Paul Tambuyser, « Morphology of the Pyrite Aggregates from Cap-Blanc-Nez, France », Mineralogical Record, vol. 7, no 4,‎ , p. 179-181.
  20. Pierre G. Pélisson, Étude minéralogique et métallogénique du district filonien polytype de Paulhaguet (Haute-Loire, Massif Central français), thèse de doctorat, Orléans, France, 1989
  21. (en) D. A. Singer, V. I. Berger et B. C. Moring, US Geological Survey Open-File Report 2008-1155, 2008.
  22. (cs) Pavel Beran et Petr Rojík, « Mineralogie a geologie lomu Lomnice v sokolovské hnědouhelné pánvi », Bulletin mineralogicko-petrografického oddělení Národního muzea v Praze, vol. 4-5,‎ , p. 77-83.
  23. (es) Miguel Calvo, Minerales y Minas de España. Vol.II. Sulfuroe y Sulfosales, Vitoria, Museo de Ciencias Naturales de Álava, , 705 p. (ISBN 84-7821-543-3), p. 488-496

Voir aussi

Sur les autres projets Wikimedia :