Méthode de Ziegler-Nichols
La méthode de Ziegler–Nichols est une méthode heuristique de réglage d'un régulateur PID. Elle a été développée par John G. Ziegler et Nathaniel B. Nichols. La méthode présentée ici est celle utilisant la génération de l'oscillation entretenue en boucle fermée:
Tout d'abord, on annule l'action intégrale et l'action dérivée. L'action proportionnelle est augmentée jusqu'à ce que le signal en sortie de la boucle fermée oscille de manière entretenue. On note alors ce gain , c'est le gain maximal (ou gain critique). On note la période d'oscillation du signal. Les paramètres du régulateur, , et , sont choisis en se référant au tableau ci-dessous.
Méthode de Ziegler-Nichols[1] | |||||
Type de contrôle | |||||
P | - | - | - | - | |
PI | - | - | |||
PD | - | - | |||
PID[2] | |||||
PIR (Pessen Integral Rule)[2] | |||||
léger dépassement[2] | |||||
aucun dépassement[2] |
Les coefficients à implémenter dans le correcteur sont : et
Ces 3 paramètres sont établis suivant cette équation:
qui a la relation suivante entre l'erreur et la sortie du contrôleur:
Évaluation
[modifier | modifier le code]La technique de réglage de Ziegler-Nichols crée un décalage d'un quart d'onde. C'est un résultat acceptable pour certaines applications, mais pas optimal pour toutes.
- « La méthode de Ziegler-Nichols est destinée à fournir aux boucles PID une meilleure stabilité face aux perturbations »[2]
La méthode de Ziegler-Nichols donne un gain agressif et favorise les dépassements (overshoots)[2] – Pour les applications qui, au contraire, ont besoin de dépassements minimaux voire nuls, la méthode de Ziegler-Nichols est inappropriée. Le principal intérêt de cette méthode est sa grande simplicité: il n'est pas nécessaire de déterminer la fonction de transfert H(p) du système pour en réaliser la correction.
Références
[modifier | modifier le code]- (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Ziegler–Nichols method » (voir la liste des auteurs).
- (en) John G. Ziegler et Nathaniel B. Nichols, « Optimum settings for automatic controllers », Transactions of the ASME, vol. 64, , p. 759–768
- Ziegler-Nichols Tuning Rules for PID, Microstar Laboratories
- Tomas Co, Michigan Technological University, « Ziegler-Nichols Closed Loop Tuning », (consulté le )