Logique classique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du XIXe siècle en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment pour la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique.

La logique classique est caractérisée par des postulats qui la fondent et la différencient de la logique intuitionniste, exprimés dans le formalisme du calcul des propositions ou du calcul des prédicats :

Ces principes sont équivalents par raisonnement intuitionniste, c’est-à-dire que l'on peut montrer que n'importe lequel d'entre eux permet de déduire les autres en utilisant les règles intuitionnistes.

On y ajoute généralement l'une des lois de De Morgan :  \neg(A\and B) \Rightarrow (\neg A\or \neg B)

Ces principes contribuent au fait que les modèles calculatoires de la logique classique sont beaucoup plus complexes que ceux de la logique intuitionniste.

Le principe

(A \to B) \vee (B \to A)

est valide en logique classique, et n'est pas démontrable en logique intuitionniste[1], mais son adjonction à la logique intuitionniste n'engendre pas la logique classique[réf. souhaitée].

Notes et références[modifier | modifier le code]

  1. (en) Dirk van Dalen (de), Logic and Structure, chap. 5 « Intuitionistic logic », exercice 9. (a), Springer-Verlag, 1991

Lien externe[modifier | modifier le code]

Articles liés[modifier | modifier le code]