Image (mathématiques)

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Page d'aide sur l'homonymie Pour les articles homonymes, voir Image (homonymie).

En mathématiques, la notion d’image est reliée à la notion d’application avec plusieurs définitions distinctes.

Étant donnée une application  :

  • pour tout élément x de E, l’unique élément qui lui est relié dans F est appelé image de x par f, et dans ce cas on dit que x est un antécédent de par f ;
  • l’ensemble des images des éléments de E est appelé ensemble image de f, ou simplement image de f, et se note  ;
f(X) est en jaune.
  • pour tout sous-ensemble , l’image directe de A par f est l’ensemble des images des éléments de A par f : , autrement dit c’est l’ensemble des éléments de F qui ont au moins un antécédent par f ;
  • pour tout sous-ensemble , l’image réciproque ou préimage de B par f est l’ensemble des antécédents des éléments de B par f :

Cette terminologie n'est pas réservée aux seules fonctions d'une variable réelle mais à toute transformation ; ainsi on parle de l'image de la figure par symétrie.

L'ensemble image ne doit pas être confondue avec l'ensemble d'arrivée (ou codomaine) de f. Pour une fonction donnée f : X → Y, l'ensemble de définition est X et l'ensemble d'arrivée est Y. L'image f(X) de X par f, aussi appelée l'image de f, est en général seulement un sous-ensemble strict de Y. On a f(X) = Y si et seulement si f est une surjection.

f est surjective.