Hadéen

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Hadéen
Notation chronostratigraphique HA
Notation RGF ha
Niveau Éonothème / Éon

Stratigraphie

DébutFin
4 540 Ma4 000 Ma

Paléogéographie et climat

Description de cette image, également commentée ci-après
Vue d'artiste d'un paysage à l'Hadéen.

L'Hadéen est le premier éon de l'histoire de la Terre. Il commence avec la formation de la Terre il y a environ 4,6 milliards d'années (Ga) pour se terminer autour de −4 Ga, et dure donc approximativement 600 millions d'années (Ma). L'Hadéen, division la plus ancienne des temps géologiques, forme avec l'Archéen et le Protérozoïque (les deux éons suivants) le Précambrien[1].

En raison de la rareté des roches ou des minéraux d'âge archéen et des transformations qu'ils ont pu subir par la suite, les connaissances géologiques et paléobiologiques à propos de l'Hadéen sont limitées. Elles sont complétées par l'étude des roches lunaires et martiennes de même âge.

Étymologie[modifier | modifier le code]

Hadéen dérive d'Hadès, nom du dieu grec des enfers mais aussi les Enfers eux-mêmes. Ce terme, choisi en référence aux conditions (notamment de très haute température) qu'on attribuait à cette période, a été créé par le géologue Preston Cloud en 1972 ; il désignait la période située avant la formation des roches les plus anciennes alors connues. Au XIXe siècle, on employait souvent le terme Azoïque, c'est-à-dire la période « sans vie ». Des découvertes récentes[2] remettent en cause ce terme, en particulier à cause d'une présence potentielle d'eau à des âges beaucoup plus anciens que ce que l'on pensait jusqu'alors.

Phénomènes généraux de l'Hadéen[modifier | modifier le code]

Cet éon correspond à la formation et à la stabilisation de la Terre primitive.

L'Hadéen n'est pas découpé en ères comme les autres éons, mais peut se résumer en deux phases majeures :

Formation de la Terre[modifier | modifier le code]

Cette phase recouvre la transformation de la nébuleuse primitive en un système planétaire complet. Ses grandes étapes sont les suivantes :

  • il y a 4,568 Ga, la nébuleuse primitive commence son effondrement sur elle-même. Cet effondrement n'est vraisemblablement pas spontané, sans quoi la galaxie serait dépourvue de nébuleuses. C'est pourquoi il est supposé qu'une supernova, explosant dans un voisinage compté en années-lumière voire en dizaines d'années-lumière, a provoqué cet effondrement ;
  • l'effondrement passe par le stade de globule de Bok, avant de prendre une forme de disque renflé en son centre, lequel contient l'essentiel de la masse de la nébuleuse d'origine et est essentiellement constitué d'hydrogène. Par simple contraction, sa température augmente. Ce genre de nuage est le plus visible aujourd'hui en infrarouge ;
  • la masse du nuage est suffisante pour que sa température au centre dépasse, avec sa pression, les conditions nécessaires pour démarrer la fusion de l'hydrogène. Cela se traduit par un million d'années d'une intense activité solaire. Beaucoup de matière est projetée au loin, en deux jets perpendiculaires au plan du disque : c'est le stade des objets d'Herbig-Haro ;
  • cette activité souffle les matériaux légers (hydrogène, hélium, eau, ammoniaque, etc.) loin du Soleil. Le Système solaire est séparé en une partie interne, riche en matériaux réfractaires comme la silice et le fer, et en une partie externe, qui s'enrichit en éléments légers ;
  • cet enrichissement a permis la formation initiale de Jupiter, située juste hors de la zone riche en éléments réfractaires (4 ua). Cette première planète a localement perturbé le disque protoplanétaire ;
  • durant la phase Herbig-Haro, le disque a concentré des particules de poussière de compositions différentes. Leur agrégation donne des grains de plus en plus gros, jusqu'à la formation de météoroïdes et de planétésimaux ;
  • finalement, les planétésimaux terminent l'accrétion des planètes par des collisions entre eux. Divers corps de dimensions planétaires donnent naissance à la Lune par collision tangentielle avec la proto-Terre (hypothèse de l'impact géant, à environ −4,45 Ga), arrachent la croûte de Mercure, et changent le sens de rotation de Vénus. Les planètes actuelles sont désormais en place. Elles sont accompagnées d'un grand nombre de météorites.

La gravitation a fait tomber ces derniers sur les planètes. La Lune en a gardé la trace et sert de référence pour considérer que le « grand bombardement tardif » a duré toute la seconde phase de l'Hadéen. Nous sommes alors à 4,5 Ga dans le passé. En 100 Ma, le nuage primordial est devenu un système solaire très jeune, dont la Terre fait partie. Cependant, cette dernière n'est pas stabilisée.

Stabilisation de la Terre[modifier | modifier le code]

À −4,5 Ga, l'hypothèse de l'océan magmatique terrestre considère que la chaleur accumulée après l'accrétion (énergie d’accrétion, énergie radioactive, etc.) est telle que, en l'absence de convection interne, la partie externe de la Terre (500 à 1 000 km) fond en un océan magmatique. Le dégazage du magma ou des roches sous l'océan magmatique commence et forme l'atmosphère initiale, dite primitive. Compte tenu du rayonnement du Soleil à ce stade de sa vie (un peu plus de 70 % de la valeur actuelle : paradoxe du jeune Soleil faible), et sur la base d'une atmosphère primitive comparable à l'atmosphère actuelle, la Terre, selon la théorie de la Terre primitive froide, aurait été gelée avec une température de surface proche de −20 °C. Cependant, un fort effet de serre est attesté, imputable à la composition différente de l'atmosphère primitive : celle-ci contenait vraisemblablement de grandes quantités de gaz à effet de serre (CO2, vapeur d'eau…). D'après les gaz contenus aujourd'hui dans les volcans, on pense à une répartition entre les éléments majoritaires suivants : CO2, CO, N2, H2 et HCl. Petit à petit, l'atmosphère se refroidit suffisamment pour que l'eau qu'elle contient tombe en pluie. Après cette séparation, la pression atmosphérique devait être proche de 20 MPa, ou 200 bars. Les océans ont donc commencé à se former dès que la température de surface est devenue inférieure à la température critique de l'eau (374,2 °C — dans le cas où la pression atmosphérique était supérieure, la pression critique de l'eau est égale à 225 bars), mais plus probablement en dessous de 350 °C. Cette phase s'est terminée à −4,3 Ga.

À −4,4 Ga, la cristallisation et la différenciation de ce magma lors de son refroidissement forme alors une mince proto-croûte continentale basaltique, un manteau silicaté et un noyau métallique[3]. Lorsque la masse du planétésimal qui deviendra la Terre dépasse une valeur critique, les éléments radioactifs, plus nombreux et plus abondants qu'aujourd'hui, commencent à réchauffer ce corps. Parmi les éléments abondants, le fer est le plus dense. Sous l'effet de la chaleur, il forme des gouttelettes de métal fondu qui se dirigent vers le centre. Lente au début, cette opération s'est ensuite suffisamment accélérée pour que certains parlent de « catastrophe du fer ». La graine du noyau terrestre s'est alors formée.

À −4,3 Ga, la présence d'eau dans les magmas basaltiques fait apparaître des roches de type granitique. L'eau de surface fait aussi apparaître des sédiments détritiques et une différenciation chimique associée. Cela fait naître des roches d'une densité inférieure à celle des roches basiques. Elles sont restées en surface. Ces paquets de roches se sont ensuite regroupés, par collisions, en proto-continents.

Le grand bombardement tardif, entre −4,1 et −3,9 Ga, a cependant probablement refondu plusieurs fois cette croûte solide, jusqu'à la formation définitive de l'atmosphère et des océans grâce, notamment, au bombardement d'astéroïdes couverts de glace (théorie de l'origine extraterrestre de l'eau après l'impact géant lunaire qui a asséché la planète – voir l'Origine de l'eau sur la Terre[4]). Un enrichissement en eau par un bombardement météoritique plutôt que cométaire est supposé, cela étant attesté par le rapport deutérium/hydrogène des roches météoritiques qui se rapproche le plus, voire est identique à celui des océans actuels. La présence d'eau mantellique liquide en grandes quantités rendant ductile la lithosphère stagnante grâce au manteau hydraté moins rigide, la tectonique des plaques a alors pu démarrer. Elle devait comporter plus de zones de subduction et de plaques qu'actuellement, car la croûte était plus fine et la chaleur disponible plus grande. La tectonique des plaques a permis la différenciation des croûtes continentale et océanique.

Les conditions nécessaires à l'apparition de la vie sont ainsi réunies, vers −4,0 Ga, lorsque ce grand bombardement est achevé, clôturant ainsi l'Hadéen.

Roches de l'Hadéen[modifier | modifier le code]

Durant les dernières décennies du XXe siècle, des géologues ont identifié et daté quelques roches de l'Hadéen sur différents sites (ouest du Groenland, nord-ouest du Canada, ouest de l'Australie). La plus ancienne formation de roches connue est située au sud-ouest du Groenland, dans la ceinture de roches vertes d'Isua. Elle a révélé quelques sédiments altérés datés d'environ 3,8 Ga et provenant d'un dyke qui a pénétré des roches déjà maintes fois déposées. Plus anciens encore, des cristaux de zircon (constituants d'une roche, donc), redéposés sous la forme de sédiments, ont été trouvés dans le gneiss d'Acasta de la partie ouest du Canada, et dans la région des Jack Hills (en), à l'ouest de l'Australie. Ils datent d'environ 3,8 Ga à près de 4,4 Ga, c'est-à-dire, pour les plus vieux, d'une époque très proche de la formation de la Terre. Les échantillons du Groenland contiennent des BIF (banded iron formations), donc potentiellement des composés organiques carbonés. Cela signifie qu'une vie fondée sur la photosynthèse était peut-être déjà présente[réf. nécessaire].

En comparaison, les fossiles les plus anciens considérés comme certains sont des stromatolithes constitués de micro-organismes photosynthétiques[5] dont l'âge serait de 3,5 Ga en Australie[6] et de 3,7 Ga au Groenland[7], résultat invalidé depuis[8].

Cependant, en 2017, la datation de micro-organismes (des tubes et des filaments micrométriques épigénisés en hématite) fossilisés par des dépôts minéraux à proximité de sources hydrothermales sous-marines, découverts dans des sédiments ferrugineux affleurants dans la ceinture de roches vertes de Nuvvuagittuq, au Québec, ont été datés d'au moins 3,77 Ga, voire peut-être de 4,28 Ga[9],[10].

De même, l’analyse isotopique, en 2015, d’inclusions de carbone (sous forme de graphite), considéré d'origine organique, dans des zircons détritiques de la région des Jack Hills en Australie-Occidentale a fourni un âge de 4,1 Ga[11].

Il existe donc des indices de plus en plus nombreux d'une vie primitive dès l'Hadéen.

Dans la culture populaire[modifier | modifier le code]

Dans le film d'animation Fantasia de Disney, le court métrage Le Sacre du Printemps retrace les origines de la Terre, de l'Hadéen jusqu'à la fin du Mésozoïque, sous forme de dessin animé pédagogique. Il s'agit d'une des rares représentations à l'écran de cette période de l'histoire de la Terre.

Notes et références[modifier | modifier le code]

  1. http://www.stratigraphy.org/ICSchart/ChronostratChart2015-01.jpg
  2. (en) « There was no such thing as hell on Earth »(ArchiveWikiwixArchive.isGoogleQue faire ?), The National Australian University, 18 novembre 2005.
  3. (en) Kleine, T., Munker, C., Mezger, K. et Palme, « A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites », Nature, vol. 418, no 6901,‎ , p. 949-952
  4. (en) Francis Albarède, « Volatile accretion history of the terrestrial planets and dynamic implications », Nature, vol. 461,‎ , p. 1227-1233 (DOI doi:10.1038/nature08477)
  5. ( Ohtomo et al., 2014)
  6. (en) Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S. & Pirajno, F. (2008),Geological setting of Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation, Pilbara craton, Western Australia. Precambr. Res. 167, 93–124
  7. (en) Allen P. Nutman, Vickie C. Bennett, Clark R. L. Friend, Martin J. Van Kranendonk & Allan R. Chivas (2016), Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, 22 septembre 2016, Nature, vol. 537, Letter, doi:10.1038/nature19355, [1]
  8. (en) Abigail C. Allwood, Minik T. Rosing, David T. Flannery, Joel A. Hurowitz & Christopher M. Heirwegh, « Reassessing evidence of life in 3,700-million-year-old rocks of Greenland », Nature,‎ (DOI 10.1038/s41586-018-0610-4)
  9. (en) Matthew S. Dodd, Dominic Papineau, Tor Grenne, John F. Slack, Martin Rittner, Franco Pirajno, Jonathan O’Neil & Crispin T. S. (2017) Little Evidence for early life in Earth’s oldest hydrothermal vent precipitates, Nature, 543, p. 60–64 (02 March 2017) doi:10.1038/nature21377 [2]
  10. Des microfossiles vieux de 3,77 milliards d’années découverts au Canada, [3]
  11. (en) Elizabeth A. Bella, Patrick Boehnkea, T. Mark Harrisona et Wendy L. Maob, « Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon », Proceedings of the National Academy of Sciences,‎ (DOI 10.1073/pnas.1517557112)

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Sur les autres projets Wikimedia :