Grand icosidodécaèdre adouci inversé

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant la géométrie
Cet article est une ébauche concernant la géométrie.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Consultez la liste des tâches à accomplir en page de discussion.

Grand icosidodécaèdre inversé adouci
Description de l'image Great inverted snub icosidodecahedron.png.
Faces Arêtes Sommets
92 ((20+60){3}+12{5/2}) 150 60
Type Polyèdre uniforme
Références d'indexation U69 – C73 – W113
Symbole de Wythoff | 5/3 2 3
Caractéristique 2
Groupe de symétrie I
Dual Grand hexacontaèdre pentagonal inversé

En géométrie, le grand icosidodécaèdre adouci inversé est un polyèdre uniforme non-convexe, indexé sous le nom U69.

Coordonnées cartésiennes[modifier | modifier le code]

Les coordonnées cartésiennes pour les sommets d'un grand icosidodécaèdre adouci inversé centré à l'origine sont toutes les permutations paires de

(±2α, ±2, ±2β),
(±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)),
(±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)),
(±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) et
(±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)),

avec un nombre pair de signes plus, où

α = ξ−1/ξ

et

β = −ξ/τ+1/τ2−1/(ξτ),

où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ξ est la plus grande solution réelle positive de ξ³−2ξ=−1/τ, ou approximativement 1,2224727. En prenant les permutations impaires des coordonnées ci-dessus avec un nombre impair de signes plus, cela donne une autre forme, l'énantiomorphe de ce polyèdre.

Voir aussi[modifier | modifier le code]

Lien externe[modifier | modifier le code]