Frontière (topologie)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Frontière (homonymie).
image illustrant la topologie
Cet article est une ébauche concernant la topologie.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En topologie, la frontière d'un ensemble est constituée des points qui, de façon intuitive, sont « situés au bord » de cet ensemble, c’est-à-dire qui peuvent être « approchés » à la fois par l'intérieur et l'extérieur de cet ensemble.

Définition[modifier | modifier le code]

Soit S un sous-ensemble d'un espace topologique (E, T).

Il est possible de définir la frontière de S (souvent notée ∂S ou Fr S) de plusieurs façons équivalentes :

Propriétés[modifier | modifier le code]

  • La frontière d'un ensemble est un fermé (d'après la deuxième définition, comme intersection de deux fermés).
  • La frontière d'un ensemble est également celle de son complémentaire (toujours d'après la deuxième définition, en utilisant l'involutivité du passage au complémentaire).
  • L'adhérence d'un ensemble est l'union de cet ensemble et de sa frontière : S = S ∪ ∂S. En particulier, un ensemble est fermé si et seulement s'il contient sa frontière.
  • L'intérieur d'un ensemble est cet ensemble privé de sa frontière. En particulier, un ensemble est un ouvert si et seulement s'il est disjoint de sa frontière.
  • Les ouverts-fermés sont donc les parties dont la frontière est vide.
  • La frontière d'un ouvert (ou d'un fermé) est d'intérieur vide. En effet, si S est ouvert, ∂S = S ∩ (E \ S) donc int(∂S) ⊂ S ∩ int(E \ S) = ∅.
  • La frontière d'une union finie est en général strictement incluse dans l'union des frontières, mais si A et B sont d'adhérences disjointes — ou plus généralement, si AB = BA = ∅ — alors ∂(AB) = ∂(A) ∪ ∂(B).

Exemples[modifier | modifier le code]

Dans l'ensemble des nombres réels muni de sa topologie usuelle :

  • ∂]0, 5[ = ∂[0,5[ = ∂]0,5] = {0, 5}
  • ∂∅ = ∅
  • ∂ℚ = ℝ
  • ∂(ℚ∩[0, 1]) = [0, 1]

Les deux derniers exemples illustrent le fait que la frontière d'une partie d'intérieur vide est son adhérence.

Frontière d'une frontière[modifier | modifier le code]

Pour tout ensemble S, ∂∂S est incluse dans ∂S, l'égalité étant vérifiée si et seulement si ∂S est d'intérieur vide.

La frontière d'un ensemble étant fermée, ∂∂∂S = ∂∂S pour tout ensemble S. L'opérateur frontière satisfait donc une forme faible d'idempotence.

Note[modifier | modifier le code]

  1. Dans le cas particulier d'un espace métrique, les boules de centre p et de rayon strictement positif forment une base de voisinages de p.