Arc cosinus

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Fonction arccos)
Aller à : navigation, rechercher
Représentation graphique (dans un repère non normé).

En mathématiques, l’arc cosinus d'un nombre réel compris au sens large entre −1 et 1 est l'unique mesure d'angle dont le cosinus vaut ce nombre, entre l'angle nul et l'angle plat.

La fonction qui associe à tout nombre réel compris au sens large entre −1 et 1 la valeur de son arc cosinus en radians est notée arccos[1] (Acos en notation française[réf. nécessaire], et cos−1, parfois acos ou acs, en notation anglo-saxonne).

Il s'agit alors de la réciproque de la fonction trigonométrique cosinus sur l'intervalle [0, π] donc, dans un repère cartésien orthonormé du plan, la courbe représentative de arc cosinus s'obtient à partir de la courbe de la restriction du cosinus par la symétrie d'axe la droite d'équation y = x.

Dérivée[modifier | modifier le code]

Comme dérivée d'une fonction réciproque, arccos est dérivable sur ]–1, 1[ et vérifie

Cette formule s'obtient grâce au théorème sur la dérivée d'une fonction réciproque et à la relation

Forme intégrale indéfinie[modifier | modifier le code]

Cette fonction peut s'écrire sous la forme d'une intégrale indéfinie :

Primitives[modifier | modifier le code]

Les primitives de l'arc cosinus s'obtiennent par intégration par parties :

Relation entre arc cosinus et arc sinus[modifier | modifier le code]

arccos(x) (bleu) et arcsin(x) (rouge)

En effet, π/2arccos x est compris entre –π/2 et π/2 et son sinus est égal au cosinus de arccos x c'est-à-dire à x, donc π/2arccos x = arcsin x.

(Pour une autre méthode, voir le § « Monotonie et signe de la dérivée » de l'article sur les fonctions monotones.)

Forme logarithmique[modifier | modifier le code]

On peut exprimer la fonction arc cosinus avec un logarithme complexe :

Référence[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Arc tangente