Aller au contenu

Espace de Hardy

Un article de Wikipédia, l'encyclopédie libre.

Les espaces de Hardy, dans le domaine mathématique de l'analyse fonctionnelle, sont des espaces de fonctions analytiques sur le disque unité 𝔻 du plan complexe.

Le cas hilbertien : l'espace H2(𝔻)[modifier | modifier le code]

Définition[modifier | modifier le code]

Soit f une fonction holomorphe sur 𝔻, on sait que f admet un développement en série de Taylor en 0 sur le disque unité :

On dit alors que f est dans l'espace de Hardy H2(𝔻) si la suite appartient à 2. Autrement dit, on a :

On définit alors la norme de f par :

Exemple[modifier | modifier le code]

La fonction appartient à H2(𝔻), par convergence de la série (série de Riemann convergente).

Une autre expression de la norme[modifier | modifier le code]

Pour f holomorphe sur 𝔻 et pour 0 ≤ r <1, on définit :

  • la fonction rM2(f, r) est croissante sur [0, 1[.
  • fH2(𝔻) si et seulement si et l'on a :

Quelques propriétés de l'espace H2(𝔻)[modifier | modifier le code]

  • Pour tout fH2(𝔻) et pour tout z dans 𝔻, on a :

Cela signifie que l'application linéaire d'évaluation ff(z), de H2(𝔻) dans ℂ, est continue pour tout z dans 𝔻 et sa norme est plus petite que :

En fait, on peut montrer que la norme est exactement égale à cette constante.

Les deux prochaines propriétés sont alors des conséquences directes de cette dernière.

  • Soit (fn) une suite d'éléments de H2(𝔻) qui converge en norme vers f alors (fn) converge uniformément sur tout compact de 𝔻 vers f.
  • Soit (fn) une suite d'éléments de H2(𝔻) incluse dans la boule unité. Alors on peut en extraire une sous-suite qui converge uniformément sur tout compact de 𝔻.

Le cas général[modifier | modifier le code]

Définition[modifier | modifier le code]

Pour 0 < p < + ∞, on définit l'espace de Hardy Hp(𝔻) comme étant l'espace des fonctions analytiques f sur le disque unité telles que :

On définit alors :

Quelques propriétés[modifier | modifier le code]

  • Pour p ≥ 1, Hp(𝔻) est un espace de Banach.
  • Soit fHp(𝔻) pour p ≥ 1. Alors pour presque tout t (au sens de la mesure de Lebesgue) :
    existe et l'application ff* est une isométrie de Hp(𝔻) sur le sous-espace de où :
  • On a une autre caractérisation de la norme grâce aux propriétés des fonctions sous-harmoniques : Pour toute fHp(𝔻), on a :

Factorisation de Beurling[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Article connexe[modifier | modifier le code]

Noyau de Poisson