Ensemble de Vitali

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L'ensemble de Vitali est un exemple simple de partie non mesurable de la droite réelle, découvert en 1905 par le mathématicien Giuseppe Vitali[1]. L'axiome du choix joue un rôle essentiel dans sa construction.

Les ensembles de Vitali[modifier | modifier le code]

Chaque classe d'équivalence élément du groupe quotient ℝ/ℚ rencontre l'intervalle unité [0, 1] : l'axiome du choix[2] assure donc l'existence d'une partie V de [0, 1] qui contienne un et un seul représentant de chaque classe de réels modulo ℚ.

Tout ensemble V de cette forme est un « ensemble de Vitali[3] » du groupe abélien polonais (ℝ, +).

Les ensembles de Vitali ne sont pas mesurables au sens de Lebesgue et ne vérifient pas la propriété de Baire[3].

Preuve de la non-mesurabilité[modifier | modifier le code]

Supposons par l'absurde V mesurable. On considère l'ensemble :

formé par la réunion de certains translatés de V. A est mesurable en tant que réunion dénombrable d'ensembles mesurables.

On remarque que cette réunion est formée d'ensembles deux à deux disjoints puisque V ne contient qu'un réel par classe d'équivalence modulo ℚ. La mesure de Lebesgue de A est donc la somme infinie dénombrable de celle de V ; puisqu'elle est inférieure à 3, cela oblige les mesures de V et de A à être nulles.

On observe pourtant que [0, 1] est inclus dans A. En effet, par définition de V, tout réel x de [0, 1] est congru modulo ℚ à un élément y de V ; ceci signifie que x – y appartient à ℚ. De plus, comme x et y sont tous deux dans [0, 1], –1 ≤ x – y ≤ 1 donc x, qui est dans le translaté V + (x – y), est élément de A. Un ensemble de mesure nulle contenant [0, 1] fournit une contradiction.

Notes et références[modifier | modifier le code]

  1. (it) Giuseppe Vitali, « Sul problema della misura dei gruppi di punti di una retta », Tip. Gamberini e Parmeggiani,‎ .
  2. (en) Horst Herrlich (de), Axiom of Choice, Springer, , p. 120.
  3. a et b (en) Lev Bukovský (sk), The Structure of the Real Line, Springer, (ISBN 978-3-03480005-1, lire en ligne), p. 259.

Article connexe[modifier | modifier le code]

Théorème de Steinhaus