Efficacité lumineuse spectrale
L'efficacité lumineuse spectrale est une fonction qui exprime, pour une longueur d'onde donnée, le rapport entre le flux énergétique du rayonnement électromagnétique reçu et la perception de flux lumineux que ce flux induit pour la vision humaine. Elle caractérise la sensibilité du système visuel humain aux différentes longueurs d'onde. Elle s'exprime, dans le Système international d'unités, en lumens par watt (lm/W).
L'efficacité lumineuse spectrale relie les grandeurs photométriques aux grandeurs radiométriques.
Plusieurs fonctions tabulées ont été normalisées par la commission internationale de l'éclairage ; elles définissent l'observateur de référence dans différentes conditions : vision diurne ou nocturne, angle d'observation de 2° ou de 10°. La plus ancienne d'entre elles, notée (CIE 1924), est la plus répandue en pratique. Malgré ses défauts et, plus généralement, l'impossibilité de définir exactement la perception humaine dans toute la diversité des conditions d'observation, la fonction est utilisée conventionnellement pour le calcul et par les appareils de mesure en photométrie.
Vision humaine et grandeur photométrique
[modifier | modifier le code]Tandis que l'objet de la radiométrie est la mesure du rayonnement sur tout ou partie du spectre électromagnétique, la photométrie s'intéresse uniquement aux rayonnements visibles et quantifie l'impression visuelle qu'ils provoquent. Des sources de puissances rayonnées identiques, mais dont les répartitions spectrales diffèrent, peuvent être perçues avec des éclats très différents. Tout particulièrement, les sources infrarouges ou ultraviolettes ne sont pas visibles, quelle que soit leur puissance. Aussi, la première évaluation de la sensibilité du système visuel humain, longueur d'onde par longueur d'onde, c'est-à-dire couleur pure par couleur pure, par le biais de la première fonction d'efficacité lumineuse, fut un acte fondateur de la photométrie. Depuis, trois autres fonctions d'efficacité lumineuse spectrale tabulées ont été normalisées à sa suite par la CIE. D'autres ont été publiées mais ne sont pas encore normalisées[1].
Dans le domaine photopique :
- (CIE 1924) la première d'entre elles, définit l'observateur de référence en vision diurne pour un champ visuel de 2°[2] ; elle est aussi la fonction colorimétrique du système CIE XYZ 1931.
- (CIE 1988) apporte une correction à la précédente[3].
- (CIE 1964) définit l'observateur de référence en vision diurne pour un angle de 10° ; elle est aussi la fonction colorimétrique du système CIE X10Y10Z10 1964.
Dans le domaine scotopique :
- (CIE 1951) définit l'observateur de référence en vision nocturne[4].
La fonction d'efficacité lumineuse spectrale permet de calculer une grandeur photométrique (v pour visuel) – flux, intensité, luminance, etc. –, à partir de la densité spectrale de son analogue radiométrique (e pour énergétique). À ce titre, la fonction est de loin la plus couramment utilisée, comme dans l'expression ci-dessous.
- .
où
- , est l'efficacité lumineuse spectrale ;
- , est l'efficacité lumineuse spectrale relative ;
- est l'efficacité lumineuse spectrale maximale, sa valeur est proche de 683 lm W−1 pour les fonctions du domaine photopique, et de 1 700 lm W−1 pour la fonction du domaine scotopique.
En pratique, la mesure de la densité spectrale est réalisée par intervalles réguliers sur les longueurs d'onde (nanomètre par nanomètre par exemple) et l'intégrale doit être interprétée comme une somme par pas réguliers . Les fonctions d'efficacité spectrale relatives normalisées sont généralement tabulées par pas de 5 nm.
- .
Fonctions normalisées
[modifier | modifier le code]Vision photopique
[modifier | modifier le code]En vision photopique, plus fréquemment nommée vision diurne dans le langage courant, seuls les cônes permettent la vision.
Champ visuel de 2° : et
[modifier | modifier le code]La fonction d'efficacité spectrale photopique mesurée sur un angle de champ visuel de 2° fut normalisée en 1924 et notée .
- D'abord, l'efficacité lumineuse spectrale maximale, en lien avec la définition de la candela[5], est d'environ 683,002 lm/W[6], correspondant à une à une longueur d'onde de 555 nm dans l'air (jaune–vert)[7]. Cette valeur est souvent arrondie à 683 lm/W[6], compte tenu du fait que le seuil de discrimination humain des luminances est au mieux de 1%[8].
- Ensuite, les valeurs tabulées de la fonction d'efficacité lumineuse spectrale relative sont données dans le tableau qui suit. Elles fixent le maximum de sensibilité de l'observateur de référence à une longueur d'onde de 555 nm. Elles sont définies de 360 nm à 830 nm par pas de 5 nm[9], mais des méthodes d'interpolation permettent d'obtenir des valeurs par pas de 1 nm[10]. Ces valeurs sont également utilisées pour définir la fonction colorimétrique du système CIE XYZ 1931.
Elle fut proposée par Gibson et Tyndall en 1923[11] à partir de mesures effectuées dans des conditions différentes aboutissant à des résultats parfois très différents[12]. C'est pourquoi, à la suite des travaux de D. B. Judd (1951) puis de Vos (1978)[13], une modification fut apportée en 1988[3] à la fonction d'efficacité lumineuse spectrale relative entre 380 et 460 nm : elle est notée ; l'efficacité lumineuse spectrale maximale reste la même. Malgré ses avantages, cette fonction reste peu utilisée en dehors des laboratoires de recherche[1].
400 | 0,000 039 | 0,002 800 | 500 | 0,323 00 | 600 | 0,631 00 | 700 | 0,004 102 | 800 | 0,000 004 | |||
405 | 0,000 640 | 0,004 656 | 505 | 0,407 30 | 605 | 0,566 80 | 705 | 0,002 929 | 805 | 0,000 003 | |||
410 | 0,001 21 | 0,007 400 | 510 | 0,503 00 | 610 | 0,503 00 | 710 | 0,002 091 | 810 | 0,000 002 | |||
415 | 0,002 18 | 0,011 779 | 515 | 0,608 20 | 615 | 0,441 20 | 715 | 0,001 484 | 815 | 0,000 001 | |||
420 | 0,004 00 | 0,017 500 | 520 | 0,710 00 | 620 | 0,381 00 | 720 | 0,001 047 | 820 | 0,000 001 | |||
425 | 0,007 30 | 0,022 678 | 525 | 0,793 20 | 625 | 0,321 00 | 725 | 0,000 740 | 825 | 0,000 001 | |||
430 | 0,011 60 | 0,027 300 | 530 | 0,862 00 | 630 | 0,265 00 | 730 | 0,000 520 | 830 | 0,000 000 | |||
435 | 0,016 80 | 0,032 584 | 535 | 0,914 90 | 635 | 0,217 00 | 735 | 0,000 361 | |||||
440 | 0,023 00 | 0,037 900 | 540 | 0,954 00 | 640 | 0,175 00 | 740 | 0,000 249 | |||||
445 | 0,029 80 | 0,042 391 | 545 | 0,980 30 | 645 | 0,138 20 | 745 | 0,000 172 | |||||
450 | 0,038 00 | 0,046 800 | 550 | 0,994 95 | 650 | 0,107 00 | 750 | 0,000 120 | |||||
455 | 0,048 00 | 0,052 122 | 555 | 1,000 00 | 655 | 0,081 60 | 755 | 0,000 085 | |||||
360 | 0,000 004 | 460 | 0,060 00 | 0,060 000 | 560 | 0,995 00 | 660 | 0,061 00 | 760 | 0,000 060 | |||
365 | 0,000 007 | 465 | 0,073 90 | 565 | 0,978 60 | 665 | 0,044 60 | 765 | 0,000 042 | ||||
370 | 0,000 012 | 470 | 0,090 98 | 570 | 0,952 00 | 670 | 0,032 00 | 770 | 0,000 030 | ||||
375 | 0,000 022 | 475 | 0,112 60 | 575 | 0,915 40 | 675 | 0,023 20 | 775 | 0,000 021 | ||||
380 | 0,000 039 | 0,000 200 | 480 | 0,139 02 | 580 | 0,870 00 | 680 | 0,017 00 | 780 | 0,000 015 | |||
385 | 0,000 064 | 0,000 396 | 485 | 0,169 30 | 585 | 0,816 30 | 685 | 0,011 90 | 785 | 0,000 011 | |||
390 | 0,000 120 | 0,000 800 | 490 | 0,208 02 | 590 | 0,757 00 | 690 | 0,008 21 | 790 | 0.000 007 | |||
395 | 0,000 217 | 0,001 550 | 495 | 0,258 60 | 595 | 0,694 90 | 695 | 0,005 723 | 795 | 0,000 005 |
Les couleurs représentées sont indicatives et ne correspondent évidemment pas à des lumières monochromatiques : elles ont été calculées afin de présenter une longueur d'onde dominante égale à la longueur d'onde à représenter.
Champ visuel de 10° :
[modifier | modifier le code]La fonction d'efficacité spectrale photopique mesurée sur un angle de champ visuel de 10°, notée , fut normalisée en 1964 en même temps que le système colorimétrique CIE X10Y10Z10 1964, dont elle est aussi la fonction colorimétrique ., d'après les travaux de Stiles et Burch (1959)[14]. L'efficacité lumineuse relative maximale est fixée à 683,6 lm/W, correspondant à une longueur d'onde de 557 nm dans l'air[15].
400 | 0,002 004 | 500 | 0,460 777 | 600 | 0,658 341 | 700 | 0,003 718 | ||
405 | 0,004 509 | 505 | 0,531 360 | 605 | 0,593 878 | 705 | 0,002 565 | ||
410 | 0,008 756 | 510 | 0,606 741 | 610 | 0,527 963 | 710 | 0,001 768 | ||
415 | 0,014 456 | 515 | 0,685 660 | 615 | 0,461 834 | 715 | 0,001 222 | ||
420 | 0,021 391 | 520 | 0,761 757 | 620 | 0,398 057 | 720 | 0,000 846 | ||
425 | 0,029 497 | 525 | 0,823 330 | 625 | 0,339 554 | 725 | 0,000 586 | ||
430 | 0,038 676 | 530 | 0,875 211 | 630 | 0,283 493 | 730 | 0,000 407 | ||
435 | 0,049 602 | 535 | 0,923 810 | 635 | 0,228 254 | 735 | 0,000 284 | ||
440 | 0,062 077 | 540 | 0,961 988 | 640 | 0,179 828 | 740 | 0,000 199 | ||
445 | 0,074 704 | 545 | 0,982 200 | 645 | 0,140 211 | 745 | 0,000 140 | ||
450 | 0,089 456 | 550 | 0,991 761 | 650 | 0,107 633 | 750 | 0,000 098 | ||
455 | 0,106 256 | 555 | 0,999 110 | 655 | 0,081 187 | 755 | 0,000 070 | ||
460 | 0,128 201 | 560 | 0,997 340 | 660 | 0,060 281 | 760 | 0,000 050 | ||
465 | 0,152 761 | 565 | 0,982 380 | 665 | 0,044 096 | 765 | 0,000 036 | ||
470 | 0,185 190 | 570 | 0,955 552 | 670 | 0,031 800 | 770 | 0,000 025 | ||
475 | 0,219 940 | 575 | 0,915 175 | 675 | 0,022 602 | 775 | 0,000 018 | ||
380 | 0,000 017 | 480 | 0,253 589 | 580 | 0,868 934 | 680 | 0,015 905 | 780 | 0,000 013 |
385 | 0,000 072 | 485 | 0,297 665 | 585 | 0,825 623 | 685 | 0,011 130 | ||
390 | 0,000 253 | 490 | 0,339 133 | 590 | 0,777 405 | 690 | 0,007 749 | ||
395 | 0,000 769 | 495 | 0,395 379 | 595 | 0,720 353 | 695 | 0,005 375 |
Vision scotopique :
[modifier | modifier le code]La formulation est identique à celle de la vision photopique, mais la sensibilité de l'œil humain est différente en vision nocturne, seuls les bâtonnets permettent la vision. L'efficacité lumineuse relative maximale est fixée à 1 700 lm/W, correspondant à une longueur d'onde de 507 nm dans l'air. L'efficacité lumineuse spectrale relative est notée et ses valeurs sont tabulées par pas de 5 nm entre 380 et 780 nm.
400 | 0,009 29 | 500 | 0,982 | 600 | 0,033 15 | 700 | 0,000 017 8 | ||
405 | 0,018 52 | 505 | 0,998 | 605 | 0,023 12 | 705 | 0,000 012 73 | ||
410 | 0,034 84 | 510 | 0,997 | 610 | 0,015 93 | 710 | 0,000 009 14 | ||
415 | 0,060 4 | 515 | 0,975 | 615 | 0,010 88 | 715 | 0,000 006 6 | ||
420 | 0,096 6 | 520 | 0,935 | 620 | 0,007 37 | 720 | 0,000 004 78 | ||
425 | 0,1436 | 525 | 0,880 | 625 | 0,004 97 | 725 | 0,000 003 482 | ||
430 | 0,199 8 | 530 | 0,811 | 630 | 0,003 335 | 730 | 0,000 002 546 | ||
435 | 0,262 5 | 535 | 0,733 | 635 | 0,002 235 | 735 | 0,000 001 87 | ||
440 | 0,328 1 | 540 | 0,650 | 640 | 0,001 497 | 740 | 0,000 001 379 | ||
445 | 0,393 1 | 545 | 0,564 | 645 | 0,001 005 | 745 | 0,000 001 022 | ||
450 | 0,455 | 550 | 0,481 | 650 | 0,000 677 | 750 | 0,000 000 76 | ||
455 | 0,513 | 555 | 0,402 | 655 | 0,000 459 | 755 | 0,000 000 567 | ||
460 | 0,567 | 560 | 0,328 8 | 660 | 0,000 312 9 | 760 | 0,000 000 425 | ||
465 | 0,620 | 565 | 0,263 9 | 665 | 0,000 214 6 | 765 | 0,000 000 320 | ||
470 | 0,676 | 570 | 0,207 6 | 670 | 0,000 148 | 770 | 0,000 000 241 | ||
475 | 0,734 | 575 | 0,160 2 | 675 | 0,000 102 6 | 775 | 0,000 000 183 | ||
380 | 0,000 589 | 480 | 0,793 | 580 | 0,121 2 | 680 | 0,000 071 5 | 780 | 0,000 000 139 |
385 | 0,001 108 | 485 | 0,851 | 585 | 0,089 9 | 685 | 0,000 050 1 | ||
390 | 0,002 209 | 490 | 0,904 | 590 | 0,065 5 | 690 | 0,000 035 33 | ||
395 | 0,004 53 | 495 | 0,949 | 595 | 0,046 9 | 695 | 0,000 0250 1 |
La luminance des gris du tableau est proportionnelle aux coefficients.
Mesure de l'efficacité lumineuse spectrale
[modifier | modifier le code]La mesure est effectuée en comparant deux lumières monochromatiques de longueurs d'onde différentes. La première servant de référence, un observateur modifie la luminance énergétique de la seconde jusqu'à égalisation de la sensation de luminosité des deux couleurs. Dans le domaine scotopique, sans vision des couleurs, l'établissement des courbes de sensibilité spectrale se fait, après un long délai d'adaptation visuelle aux faibles lumières, en réglant la radiance de lumières monochromatiques de longueur d'onde variées, pour que leur luminosité soit égales. En vision photopique, en revanche, on ne peut procéder que de proche en proche. La comparaison de la luminosité de deux lumières monochromatiques de longueur d'onde très différente est en effet très difficile, il est impossible d'égaliser de façon précise et répétable deux couleurs très différentes, et deux essais consécutifs aboutissent souvent à des résultats différents[18]. La mesure de l'efficacité lumineuse spectrale est compliquée par le fait que les résultats diffèrent considérablement selon les différentes méthodes, mais aussi selon les différents individus testés[1].
Il existe ou a existé de nombreuses méthodes – comparaison directe hétérochrome de luminosité, comparaison pas-à-pas de luminosité, distinction minimale du bord, comparaison par papillotement hétérochrome, etc. – dont les grands principes sont précisés ci-après.
- Comparaison directe
- On présente deux plages, dont le sujet peut faire varier la luminosité, généralement par la variation de distance de la source de lumière, sur un fond éclairé uniformément avec une luminosité nettement différente. En raison de la loi du contraste simultané des couleurs, la différence est plus perceptible, et donc le réglage est plus fin, si les plages sont contiguës.
- Comparaison par papillotement
- On évite l'effet du contraste simultané, qui joue dans tous les cas avec le fond, en faisant alterner rapidement les deux lumières à comparer. On recherche la fréquence d'alternance qui provoque le plus d'impression de papillottement ((en) flicker), puis on recherche la différence de radiance entre les deux longueurs d'onde pour laquelle ce papillotement est le moins visible.
Annexes
[modifier | modifier le code]Bibliographie
[modifier | modifier le code]- Yves Le Grand, Optique physiologique : Tome 2, Lumière et couleurs, Paris, Masson, , 2e éd..
- Robert Sève, Science de la couleur : aspects physiques et perceptifs, Marseille, Chalagam, , 374 p. (ISBN 978-2-9519607-5-6 et 2-9519607-5-1).
- [PDF] (en) Lindsay T. Sharpe, Andrew Stockman, Wolfgang Jagla et Herbert Jägle, « A luminous efficiency function, V*(λ), for daylight adaptation », Journal of Vision, vol. 5, no 11, (ISSN 1534-7362, DOI 10.1167/5.11.3, lire en ligne, consulté le )
- (en) Casimer DeCusatis, Jay M. Enoch, Vasudevan Lakshminarayanan et Guifang Li, Handbook of Optics, volume 2, McGraw-Hill Professional Publishing, , 1264 p. (ISBN 978-0-07-162927-0 et 0-07-162927-0, OCLC 958566930, lire en ligne)
- (en) Claudio Oleari, Standard Colorimetry : Definitions, Algorithms and Software, John Wiley & Sons, , 512 p. (ISBN 978-1-118-89444-6, lire en ligne)
- [PDF] Michel Saillard et Yves Cortial, « Calcul de la courbe d'efficacité lumineuse spectrale de l'œil effectué à partir des mesures des intensités des différentes couleurs du spectre solaire de Josef Fraunhofer (1817) », Revue d'histoire des sciences, vol. 46, no 2, , p. 259-272 (lire en ligne).
Articles connexes
[modifier | modifier le code]Liens externes
[modifier | modifier le code]- Valeurs tabulées accessibles aux formats .csv ou .xml : (en) « Luminous efficiency », sur cvrl.org
Références
[modifier | modifier le code]- Lindsay T. Sharpe et al. 2005, p. 949
- Robert Sève 2009, p. 175-177.
- « CIE 1988 Modified 2° Spectral Luminous Efficiency Function for Photopic Vision », sur cie.co.at (consulté le )
- (en) « CIE and mesopic photometry », sur www.cie.co.at (consulté le )
- Site du Bureau international des poids et mesures : Unité d'intensité lumineuse (candela) Sur le site bipm.org - Consulté le 10 avril 2012
- La définition de la candela fixe l'efficacité lumineuse spectrale à 683 lm/W ce qui correspond à une longueur d'onde de 555,016 nm. L'efficacité lumineuse maximale est donc établie de façon plus précise par : Km = 555,016555 683 = 683,002 lm/W, valeur souvent arrondie (DeCusatis et al. 2009, p. 34.39).
- Robert Sève 2009, p. 64.
- Robert Sève 2009, p. 121.
- Robert Sève 2009, p. 334 ; ISO 11664-1:2007 (CIE S 014-1/E:2006).
- Color and Vision Research Laboratory, « Luminosity functions », sur www.cvrl.org (consulté le )
- K. S.Gibson et E. P. T. Tyndall, « Visibility of radiant energy », sur archive.org, (consulté le )
- Lindsay T. Sharpe et al. 2005, p. 948
- (en) J. J. Vos, « Colorimetric and photometric properties of a 2-deg fundamental observer », Color Research and Application, (DOI 10.1002/col.5080030309, lire en ligne)
- (en) Janos Schanda, Colorimetry : Understanding the CIE System, John Wiley & Sons, , 390 p. (ISBN 978-0-470-17562-0, lire en ligne)
- Robert Sève 2009, p. 175-177
- Robert Sève 2009, p. 321
- Yves Le Grand 1972, p. 70
- Yves Le Grand 1972.