Décomposition d'Iwasawa

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant l’algèbre
Cet article est une ébauche concernant l’algèbre.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

La décomposition d'Iwasawa d'un groupe de Lie semi-simple est une généralisation de la décomposition d'un élément du groupe spécial linéaire SL(n, ℝ) comme produit KAN (de façon unique) d'un élément K du groupe spécial orthogonal SO(n, ℝ), d'une matrice diagonale A à coefficients diagonaux positifs (et dont le produit est nécessairement égal à 1), et d'une matrice triangulaire supérieure N dont les coefficients diagonaux valent 1.

Article connexe[modifier | modifier le code]

Décomposition QR d'une matrice comme produit d'une matrice orthogonale et d'une matrice triangulaire