Cuboctaèdre

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Cuboctaèdre

Description de l'image  cuboctahedron.gif.
Faces Arêtes Sommets
14 (8 triangles, 6 carrés) 24 12 de degré 4
Type Solide d'Archimède uniforme
Références d'indexation U7 – C19 – W11
Symbole de Schläfli t1{4,3} ou t0,2{3,3}
Symbole de Wythoff 2 | 3 4 ou 3 3 | 2
Diagramme C-D CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png ou CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Caractéristique 2
Propriétés Semi-régulier convexe quasi-régulier
Volume (arête a) {5\over 3}\sqrt{2} a^3
Aire de surface (6+1\sqrt{3})a^2
Angle dièdre 125,26°
Groupe de symétrie Oh (en)
Dual Dodécaèdre rhombique
Le cuboctaètre vu comme cube rectifié

Un cuboctaèdre est un polyèdre à 14 faces régulières, dont huit sont des triangles équilatéraux et six sont des carrés. Il comporte

  • 12 sommets identiques, chacun joignant deux triangles et deux carrés opposés deux à deux ;
  • 24 arêtes identiques, chacune commune à un triangle et un carré.

Il s'agit donc d'un polyèdre quasi-régulier, c’est-à-dire un solide d'Archimède (uniformité des sommets) avec en plus, une uniformité des arêtes.

Il a été baptisé par Kepler.

C'est le seul[réf. nécessaire] polyèdre semi-régulier dont la distance du centre de gravité aux sommets est égale aux arêtes.

Son polyèdre dual est le dodécaèdre rhombique.

Autres noms[modifier | modifier le code]

Aire et volume[modifier | modifier le code]

L'aire A et le volume V d'un cuboctaèdre de côté a sont donnés par

A=(6+2\sqrt{3})a^2
V=\begin{matrix}{5\over3}\end{matrix}\sqrt{2}a^3

Relations géométriques[modifier | modifier le code]

Un cuboctaèdre peut être obtenu en prenant une section plane appropriée d'un polytope en croix à quatre dimensions.

Un cuboctaèdre possède une symétrie octaédrique. Sa première stellation est le composé d'un cube et de son dual, l'octaèdre, avec les sommets du cuboctaèdre localisés au milieu des arêtes de l'autre.

Le cuboctaèdre est un cube rectifié et aussi un octaèdre rectifié.

C'est aussi un tétraèdre biseauté. Avec cette construction, on lui donne le symbole de Wythoff : 3 3 | 2.

Un biseautage de biais d'un tétraèdre produit un solide avec les faces parallèles à celles du cuboctaèdre, c’est-à-dire huit triangles de deux tailles et six rectangles. Alors que ses arêtes sont inégales, ce solide reste à sommets uniformes : le solide possède le groupe symétrique complet et ses sommets sont équivalents avec ce groupe.

Les arêtes d'un cuboctaèdres forment quatre hexagones réguliers. Si le cuboctaèdre est coupé dans le plan d'un de ces hexagones, chaque moitié est une coupole hexagonale (ou coupole triangulaire), un des solides de Johnson; le cuboctaèdre lui-même peut ainsi être appelé une gyrobicoupole hexagonale (ou gyrobicoupole triangulaire), le plus simple d'une série (autre que le gyrobiprisme triangulaire ou « gyrobicoupole digonale »). Si les moitiés sont replacées ensembles avec une rotation, alors ces triangles rencontrent les triangles et les carrés rencontrent les carrés, le résultat est un autre solide de Johnson, l'orthobicoupole hexagonale.

Les deux bicoupoles hexagonales sont importantes dans l'empilement compact. La distance à partir du centre du solide vers ses sommets est égale à sa longueur d'arête. Chaque sphère centrale peut avoir au plus douze voisines, et dans un réseau cubique à faces centrées, celles-ci prennent les positions des sommets d'un cuboctaèdre. Dans un réseau d'empilement compact hexagonal, ils correspondent aux coins des orthobicoupoles hexagonales. Dans les deux cas, la sphère centrale prend la position du centre du solide.

Les cuboctaèdres apparaissent comme des cellules dans trois des nids d’abeille uniformes convexes (en) et dans neuf des polychores uniformes.

Le volume du cuboctaèdre est 5/6 du cube circonscrit et 5/8 de l'octaèdre circonscrit ; c'est 52/3 fois le cube de la longueur d'une arête.

Coordonnées cartésiennes[modifier | modifier le code]

Les coordonnées cartésiennes des sommets d'un cuboctaèdre (de longueur d'arête 2) centré à l'origine sont

(±1,±1,0)
(±1,0,±1)
(0,±1,±1)

Note et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Cuboctahedron » (voir la liste des auteurs)