Cube adouci

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Cube adouci
Description de l'image Snub_hexahedron.png.

Faces Arêtes Sommets
38 triangles et carrés 60 24 de degré 5
Type Solide d'Archimède
Caractéristique 2
Propriétés Semi-régulier et convexe, chiral
Volume (arête a) est la constante de Tribonacci
Aire de surface
Groupe de symétrie O
Dual Icositétraèdre pentagonal

Le cube adouci ou cuboctaèdre adouci est un solide d'Archimède.

Le cube adouci possède 38 faces dont 6 sont des carrés et les 32 autres sont des triangles équilatéraux. Il possède 60 arêtes et 24 sommets. Il a deux formes distinctes, qui sont leurs images dans un miroir (ou "énantiomorphes") l'un de l'autre.

Coordonnées cartésiennes[modifier | modifier le code]

Les coordonnées cartésiennes des sommets du cube adouci sont les permutations paires de avec un nombre pair de signes plus, et les permutations impaires avec un nombre impair de signes plus, où ξ est la constante de Tribonacci, solution réelle de

,

et qui peut s'écrire

En prenant les permutations paires avec un nombre impair de signes plus, et les permutations impaires avec un nombre pair de signes plus, on obtient un cube adouci différent, l'image miroir.

La longueur des arêtes de ce cube adouci est .

On notera que, parmi les 6 permutations de 3 coordonnées, les permutations paires sont les 3 permutations circulaires.

Relations géométriques[modifier | modifier le code]

Animation illustrant la transformation d'un rhombicuboctaèdre en cube adouci

Le cube adouci peut être engendré[1] en prenant les six faces d'un cube de côté de longueur a, en les translatant d'une longueur vers l'extérieur de façon qu'elles ne se touchent plus. Puis, on leur donne une rotation autour de leur centre (toutes dans le sens horaire ou toutes dans le sens antihoraire relativement à l'axe orthogonal à leur face et sortant du cube) d'un angle , de sorte que les espaces entre les faces carrées puissent être remplis par des triangles équilatéraux.

On peut aussi l'obtenir à partir du petit rhombicuboctaèdre en traçant une diagonale dans 12 des 18 carrés que ce polyèdre possède, (à savoir ceux qui ont un côté en commun avec l'un des 8 triangles du rhombicuboctaèdre), puis en déformant les 24 triangles rectangles ainsi obtenus en triangles équilatéraux[2].

Le cube adouci ne doit pas être confondu avec le cube tronqué.

Notes et références[modifier | modifier le code]

  1. « Snub Cube », sur http://mathworld.wolfram.com (consulté le 31 janvier 2019)
  2. Michel Derche, François Pitou, Polyèdres dans l'espace, APMEP/Plot, , p. 29. Les centres des 8 triangles forment un cube intérieur au rhombicuboctaèdre et les 12 carrés concernés correspondent aux arêtes de ce cube.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) Robert Williams, The Geometrical Foundation of Natural Structure : A Source Book of Design, (ISBN 0-486-23729-X).

Liens externes[modifier | modifier le code]