Corrélation partielle

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les probabilités et la statistique
Cet article est une ébauche concernant les probabilités et la statistique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Le coefficient de corrélation partielle, noté ici , permet de connaître la valeur de la corrélation entre deux variables A et B, si la variable C était demeurée constante pour la série d’observations considérées.

Dit autrement, le coefficient de corrélation partielle est le coefficient de corrélation totale entre les variables A et B quand on leur a retiré leur meilleure explication linéaire en termes de C. Il est donné par la formule :

Démonstration géométrique[modifier | modifier le code]

La démonstration la plus rapide de la formule consiste à s’appuyer sur l’interprétation géométrique de la corrélation (cosinus).

Les séries d’observations A, B et C, une fois centrées réduites, sont des vecteurs centrés OA, OB, OC de longueur unité :

PartialCorrelation.png

Leurs extrémités déterminent un triangle sphérique ABC, dont les côtés a, b et c sont les arcs de grands cercles BC, AC et AB. Les coefficients de corrélations entre ces vecteurs sont , et . Alors la loi fondamentale des triangles sphériques donne, pour l'angle C, la relation suivante entre les cosinus :

De même que c est l'angle entre les points A et B, vus du centre de la sphère, C est l'angle sphérique entre les points A et B, vus du point C à la surface de la sphère, et est la « corrélation partielle » entre A et B quand C est fixé.

Domaines d'application[modifier | modifier le code]

La notion de corrélation partielle est utilisée :

Références[modifier | modifier le code]

  • (en) R. A. Fisher (1924). The distribution of the partial correlation coefficient. Metron 3 (3–4): 329–332.
  • (en) Formules mathématiques dans la section « Description » de l'IMSL PCORR routine