Continuum thermohygrométrique

Un article de Wikipédia, l'encyclopédie libre.

Les conditions climatiques instantanées d'un lieu se décrivent en termes de température et d’hygrométrie relative, sachant que la capacité de l'air à absorber de la vapeur d'eau augmente avec sa température (tant qu'il n'est pas saturé en vapeur d'eau). On parle donc de couple thermohygrométrique.

Pour l'écologue ou le cartographe, dans un paysage, un continuum thermohygrométrique désigne une aire ou un habitat (dans le sol, le sous-sol, au niveau du sol et jusqu'à la canopée) caractérisés par une relative homogénéité du couple « température × hygrométrie ». C'est de ce couple que dépend le point de rosée ou point de givrage.

Ces deux paramètres liés ont une grande importance écologiques pour beaucoup d'espèces animales, végétales et fongiques. Chaque espèce est en effet caractérisée, pour ces paramètres, par une « fourchette optimale » de vie avec un minimum et un maximum (extrema) de survie hors de laquelle l'individu meurt ou cesse certaines activités vitales (hibernation, estivation, enkystementetc.). Des microclimats s'établissent dans certaines conditions géomorphologiques et d'albédo, mais sur terre, le vivant par la transpiration et surtout par l'évapotranspiration du végétal peut aussi contribuer à établir des microclimats significatifs (au profit d'une biodiversité plus élevée). Ce phénomène est particulièrement marqué en forêt[1]), non sans impacts sur la biodiversité et l'écosystème forestier[1]. Inversement, labours, coupes rases ou artificialisation des sols (imperméabilisation et construction urbaine peuvent affecter négativement ces microclimats, ou en créer de nouveaux comme par exemple les bulles de chaleur urbaine).

Enjeux[modifier | modifier le code]

Excréments de chien couverte par une moisissure, en hiver. Les excréments se décomposent bien plus vite lorsque présents dans un contexte permettant leur colonisation par des insectes coprophages et/ou des bactéries ou champignons (ici en plein hiver, en zone tempérée). Des conditions particulières d'hygrométrie-température (le jour et/ou la nuit) sont nécessaires pour la colonisation de la matière organique par les champignons.
  • Ils sont probablement importants pour les risques d'incendie et la santé des végétaux.
  • Les transferts thermohygrométriques sont responsables de phénomènes de condensation, moisissure, mauvaises odeurs ou ponts thermiques dans l'Habitat en particulier lors de rénovations ne les prenant pas ou mal en compte.
  • Les continuums thermohygrométriques sont discrets mais très importants en matière d'écologie du paysage.
- Un corridor biologique doit répondre pour une espèce terrestre donnée à des conditions thermohygrométriques particulières[2].
Or, l'humidité relative de l'air dépend de l'évaporation, mais aussi et parfois surtout de l'évapotranspiration, deux facteurs qui peuvent être fortement modifiés par les activités humaines (imperméabilisation des sols, désherbage, drainage, irrigation, construction ou destruction de seuils sur les cours d'eau, etc.).
les stimuli thermohygrométriques, olfactifs et auditifs sont en effet des facteurs déterminants pour de nombreuses activités animales (réveil, sommeil, chasse, migration, reproduction, choix du lieu de ponte, maternage, etc.). L'odeur et de nombreuses molécules fragiles (phytohormones, phéromones, hormones de stress) sont mieux portées et bien plus loin (comme les sons d'ailleurs) par l'air humide.

Modifications anthropique des conditions thermohygrométriques et leurs effets[modifier | modifier le code]

Les activités humaines interfèrent discrètement, mais fortement avec les continuums thermohygrométriques naturels, notamment via :

  • l'imperméabilisation des sols ;
  • diverses modification du cycle de l'eau (drainage, irrigation, stockage d'eau en barrage, etc.) ;
  • les effets thermiques de l'urbanisation (modification de l'albédo, bulle de chaleur urbaine (exacerbée par la climatisation) ; Par exemple, durant la canicule de 2003 la température était plus chaude de presque 10 °C au centre de Paris par rapport aux espaces les plus frais de la périphérie de la conurbation) ;
  • la fragmentation des forêts, les coupes rases et de manière générale la présence/absence de végétation active ; l'évapotranspiration est « rafraichissante » et la condensation sous forme de rosée est légèrement « réchauffante » en soirée pour l'air. Les défrichements, les coupes rases, la déforestation modifient les équilibres thermohygrométriques et les microclimats, en causant de phénomènes de fragmentation forestière et plus généralement de fragmentation écologique (en exposant des espèces qui ont besoin d'humidité à des barrières de zones déshydratées (parfois dénommée « barrières thermohygrométriques »[3] ; Watling et braga ont ainsi montré en 2015 que leur degré de résistance à la dessication suffit à expliquer la distribution des amphibiens dans un paysage de forêt tropicale fragmenté[4] ; sensibilité qui peut varier selon que l'on teste l'adulte ou le tout jeune individu qui y est souvent encore plus vulnérable) ; Les anoures ont presque tous besoins de micromilieux très humides[5] ; tritons et salamandres également[6]
  • l'artificialisation des milieux ;
  • le drainage ou l'arrosage ;
  • La déforestation (par exemple on considère que l'eau évapotranspirée par la forêt amazonienne forme des rivières volantes dont le débit annuel dépasse celui de l'Amazone[7]. Ces rivières volantes sont la principale source de pluie dans cette partie du monde, mais les incendies en Amazonie, en Afrique et à Java, Bornéo ou Sumatra les mettent en péril, au risque d'engendrer un cercle vicieux irréversible d'assèchement et de mort de la forêt.
  • etc.

Notes et références[modifier | modifier le code]

  1. a et b Jiquan Chen, Sari C. Saunders, Thomas R. Crow, Robert J. Naiman, Kimberley D. Brosofske, Glenn D. Mroz, Brian L. Brookshire, and Jerry F. Franklin (1999), Microclimate in Forest Ecosystem and Landscape Ecology Variations in local climate can be used to monitor and compare the effects of different management regimes  ; BioScience Vol. 49 No. 4, avril 1999
  2. Rodrigues P (2014) La théorie des graphes pour analyser la transparence écologique des infrastructures de transport (Doctoral dissertation, Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement (CEREMA), Pôle d’activités Les Milles, avenue Albert Einstein, CS 70499, 13593 Aix-en-Provence Cedex 3).
  3. Vanpeene-Bruhier S & berne B () http://www.infra-transports-materiaux.cerema.fr/IMG/pdf/Poster-9.pdf Fréquentation par la petite faune de passages aménagés de l’Axe de Bièvre (Isère): méthode de suivi et résultats] |4èmes rencontres " Routes et petite faune sauvage " | PDF, 13 p.
  4. Watling J.I & Braga L (2015) Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landsc. Ecol. 30, 1449–1459 PDF, 11p
  5. Rittenhouse TAG, Harper EB, Rehard LR, Semlitsch RD (2008) The role of microhabitats in the desiccation and survival ofanurans in recently harvested Oak-Hickory forest. Copeia2008:807–814
  6. Rothermel BB, Luring TM (2005) Burrow availability and desiccation risk of mole salamanders (Ambystoma talpoideum) in harvested versus unharvested forest stands. J Herpetol 39:619–626
  7. Les rivières volantes, YouTube, déposé par le Département fédéral des affaires étrangères (DFAE) le 11 avril 2014

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]