Cofibration

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Ce modèle est-il pertinent ? Cliquez pour en voir d'autres.
Cet article ne cite pas suffisamment ses sources (octobre 2015).

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article, comment ajouter mes sources ?).

En mathématiques, une cofibration est une application qui satisfait la propriété d'extension des homotopies (en), ce qui est le cas pour les inclusions de CW-complexes. Le quotient de l'espace but par l'espace source est alors appelé cofibre de l'application.

L'inclusion dans le cylindre d'application permet de remplacer une application continue entre deux espaces topologiques par une cofibration homotopiquement équivalente. La cofibre est alors appelée cofibre homotopique de l'application initiale.

Définition[modifier | modifier le code]

Une application entre deux espaces topologiques et est appelée une cofibration si pour toute application de dans un espace topologique telle que la composée avec est homotope à une application , il existe une homotopie de vers dont la composée avec donne l'homotopie sur . Cette définition est résumée par le diagramme commutatif suivant :

Propriétés[modifier | modifier le code]

Pour une cofibration i de A dans X, l'homologie de la cofibre C est celle de la paire d'espaces et s'inscrit donc dans une suite exacte longue :

Articles connexes[modifier | modifier le code]