Cellule souche pluripotente induite

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Cellule souche (homonymie).

Les cellules souches pluripotentes induites (CSPi) (en anglais Induced pluripotent stem cells soit iPS ou iPSCs) sont des cellules souches pluripotentes générées en laboratoire à partir de cellules somatiques. Ces cellules souches induites ont le potentiel de se différencier en n'importe quelle cellule du corps humain et ont donc des applications très variées en thérapie et en recherche biomédicale. Elles sont considérées comme l'une des avancées majeures de la biotechnologie puisqu'elles permettent de constituer une alternative à l'utilisation de cellules souches embryonnaires humaines, permettant ainsi de dépasser les problèmes éthiques liés à ces dernières[1].

Historique[modifier | modifier le code]

Jusque dans les années 2000, les cellules souches pluripotentes humaines utilisées en recherche étaient d’origine embryonnaire. Malgré leurs applications potentielles en médecine, l’utilisation de ce type de cellules soulève cependant des problèmes éthiques car elles sont théoriquement capables de former un individu. De plus, en médecine régénérative, la greffe de cellule souches embryonnaires chez des patients présente un risque de rejet en raison de l'incompatibilité immunologique entre le donneur et le receveur.

Afin de contourner ces limites, le chercheur Shinya Yamanaka et son équipe émirent en 2006 l'hypothèse selon laquelle il est possible de transformer une cellule différenciée en cellule souche en réactivant l'expression des gènes associés à la pluripotence. Via des agents viraux, ces chercheurs ont introduit dans des fibroblastes de souris adultes quatre facteurs de transcription présents chez les cellules souches embryonnaires, Oct3/4, Sox2, KLF4, et c-Myc. Ils montrèrent que l'introduction de ces facteurs de transcription provoque une dé-différenciation des cellules vers un état pluripotent caractéristique du stade embryonnaire : la pluripotence "induite" était découverte[2]. En effet, par ce procédé, les cellules acquièrent les propriétés fondamentales des cellules souches embryonnaires que sont la pluripotence et l'auto-renouvèlement. En 2007, en utilisant le même procédé, ces chercheurs ont réitéré l'exploit en utilisant des cellules humaines adultes[3]. Pour cette découverte, Shinya Yamanaka a obtenu en 2012 le prix Nobel de médecine[4].

Principe de la pluripotence induite[modifier | modifier le code]

La pluripotence induite consiste à « reprogrammer » une cellule différenciée en cellule souche en réactivant l'expression des gènes associés au stade embryonnaire (stade pluripotent). Pour cela un cocktail de gènes typiques des cellules souches est introduit dans l'ADN de cellules adultes à l'aide de rétrovirus, ce qui provoque une répression des gènes associés à la spécialisation cellulaire ; on parle alors de « dé-différenciation cellulaire ». La simplicité de ce mécanisme a surpris de nombreuses personnes dans la communauté des biologistes[5]. Des travaux ultérieurs ont montré que plusieurs types de cellules humaines peuvent être reprogrammés en cellules souches pluripotentes[6] parmi lesquelles les cellules de la peau, les cellules sanguines, etc. Ceci démontrerait le caractère universel de la pluripotence induite.

Depuis, différentes techniques sont utilisées pour apporter le cocktail de gènes. Ainsi, il est possible par exemple d'utiliser d'autres vecteurs viraux comme les lentivirus ou les adénovirus mais aussi des techniques qui ne font pas appel à des virus comme la simple injection d'ARNm codant pour les facteurs de pluripotence[7]. Ces améliorations visent à empêcher ou tout du moins mieux contrôler l'insertion des gènes de pluripotence dans le génome de la cellule ciblée. En effet, une insertion dans une région oncogénique peut conduire au développement de cellules cancéreuses.

Applications biomédicales[modifier | modifier le code]

Cette technique permet de fabriquer des cellules souches « à la carte » pour la médecine régénératrice. L’une des premières preuves a été établie avec la maladie de Parkinson. Des chercheurs ont réussi à transplanter des CSPi dans le cerveau d’un modèle animal de la maladie de Parkinson et ont montré que ces cellules se sont différenciées en neurones dopaminergiques, avec une amélioration des symptômes de la maladie chez l'animal[8]. De même, une étude menée sur des modèles murins de lésion de la moelle épinière, montre que la transplantation de CSPi humaines stimule la régénération neuronale et améliore la locomotion[9]. La transplantation de CSPi humaines dans le myocarde de souris ayant subi un infarctus aigu conduit à une amélioration substantielle des fonctions cardiaques chez ces dernières grâce à la différenciation des CSPi en cellules cardiaques.

Une autre application intéressante des CSPi réside dans le traitement des maladies génétiques. Par exemple, utilisant des souris chez laquelle la drépanocytose avait été induite, des chercheurs ont produit des CSPi chez lesquelles ils ont corrigé l'anomalie génétique. Ces cellules différenciées en cellules souches hématopoïétiques (cellules précurseurs des cellules sanguines) ont été réintroduites dans les souris drépanocytaires, permettant une nette amélioration des symptômes chez ces dernières[10].

Les CSPi peuvent aussi être utilisées dans le cadre d'une médecine personnalisée. Par exemple il serait possible de générer des cellules hépatiques ou rénales qui serviront à faire des analyses toxicologiques sur différents médicaments, afin de déterminer celui qui sera le plus tolérable pour chaque patient[11], ce qui permettra au médecin de faire le meilleur choix dans l'éventail de médicaments disponibles pour traiter une pathologie donnée. Dans le cadre des anomalies dégénératives et génétiques, les CSPi peuvent être utilisées pour produire des cellules reproduisant la maladie in vitro, ce qui facilitera l’étude de la maladie et la réalisation de tests pharmacologiques afin d’établir le meilleur protocole thérapeutique adapté à chaque patient[6],[12].

Dégénérescence maculaire liée à l'âge[modifier | modifier le code]

Une équipe du RIKEN, dirigée par le chercheur Masayo Takahashi, a effectué le une transplantation de cellules de la rétine sur une patiente de 70 ans atteinte de dégénérescence maculaire liée à l'âge (DMLA), dans la première étude clinique du monde, en utilisant des CSPi[13]. L'intervention a consisté en l'implantation d'un mince film de cellules rétiniennes, développé à partir de cellules adultes de la peau du bras de cette japonaise[14].

Applications en recherche[modifier | modifier le code]

Les cellules souches pluripotentes induites constituent une source alternative pratique de cellule humaine pour la recherche biomédicale. A partir d'une simple biopsie de la peau chez des patients, les chercheurs peuvent obtenir facilement ces CSPi. Ils peuvent ainsi mettre en culture et étudier différents types cellulaires. Ces cellules présentent le même ADN que le patient, ce qui permet de reproduire en culture des pathologies liées à des mutations ou des altérations génétiques. Cela permet d'étudier des maladies génétiques mais également la part de génétique de pathologies plus complexes, comme par exemple les troubles du spectre autistique ou la schizophrénie.

Avec les avancées récentes en génétiques, notamment le système CRISPR-CAS9, il est également possible de modifier des CSPi de patients sains pour induire et étudier le phénotype d'altérations génomiques données.

Les CSPi peuvent théoriquement générer l'ensemble des cellules du corps par différenciation cellulaire. Il est également possible de les utiliser pour former des organoïdes, modèle miniature tridimensionnel d'un tissu ou d'un organe.

Aspects éthiques[modifier | modifier le code]

L'un des avantages principaux des CSPi est qu'elles permettent de réaliser les thérapies cellulaires envisagées avec des cellules souches sans recourir à aucune destruction d'embryon ou clonage thérapeutique. En effet ces cellules présentent des caractéristiques extrêmement proches des cellules souches tout en étant générées à partir d'une cellule adulte et donc sans besoin d'utilisation d'un embryon.

Néanmoins, la possibilité de différencier des CSPi en gamètes mâles et femelles[15] permet en théorie de réaliser le clonage d'une personne à partir de cellules adultes. Dans ce cas précis, les thématiques éthiques liées au clonage sont toujours d'actualité pour les cellules CSPi.

Limites et perspectives[modifier | modifier le code]

Une des questions en suspens reste la propension inconnue de ces cellules souches à développer des cancers[16]. En effet, certains des facteurs utilisés pour induire la pluripotence, sont des oncogènes c’est-à-dire qu’ils favorisent la formation des tumeurs cancéreuses, il s’agit en l’occurrence de Klf4 et c-Myc. D'ailleurs, on observe une hausse de l'expression des gènes associés aux tumeurs chez les cellules pluripotentes induites par ces facteurs[17].

Des travaux ultérieurs ont montré qu'il est possible d'induire la pluripotence sans recourir à ces oncogènes. Par exemple, une équipe de Harvard est parvenu à induire la pluripotence en utilisant l'acide valproïque en lieu et place des oncogènes, bien que ce soit avec une efficacité moindre[18].

En outre, l'utilisation de virus comme moyen d'introduction des facteurs de reprogrammation dans la cellule présente des risques. En effet, l’ADN viral peut s'introduire dans celui de la cellule hôte provoquant des mutations génétiques chez cette dernière. Des efforts ont donc été entrepris pour développer des techniques ne nécessitant pas l'utilisation des vecteurs viraux. C'est ainsi que des équipes sont parvenues à induire la pluripotence en délivrant les différents facteurs sous la forme de protéines recombinantes ou d'ARNm[19],[20]. Mais l'efficacité de ces deux techniques est très faible comparativement à l'approche virale et nécessite donc d’être optimisée.

Notes et références[modifier | modifier le code]

  1. http://www.nature.com/nbt/journal/v29/n3/full/nbt.1798.html
  2. (en) Takahashi, K. et S. Yamanaka « Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors » Cell 2006. 126(4):663-76. PMID 16904174
  3. (en) Takahashi, K. et al. « Induction of pluripotent stem cells from adult human fibroblasts by defined factors » Cell 2007 ;131(5):861-72. PMID 18035408
  4. (en) Prix Nobel de Physiologie et Médecine 2012. ([1])
  5. http://www.universcience.fr/fr/science-actualites/actualite-as/wl/1248100232539/cellules-souches-embryonnaires-on-sait-les-fabriquer-genetiquement/
  6. a et b (en) Huang GTJ. « Induced Pluripotent Stem Cells—A New Foundation in Medicine » Journal of Experimental & Clinical Medicine 2010;2(5):202-17. PMID 22408700
  7. (en) Zhou YY., Zeng F., « Integration-free methods for generating induced pluripotent stem cells. », Genomic Proteomics Bioinformatics, vol. 11(5),‎ , p. 284-287 (PMID 24121200)
  8. Wernig, M., et al., Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(15): p. 5856-5861.
  9. Nori, S., et al., Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(40): p. 16825-16830.
  10. http://www.nejm.org/doi/full/10.1056/NEJMcibr0708823
  11. Osafune, K., In vitro regeneration of kidney from pluripotent stem cells. Exp Cell Res, 2010. 316(16): p. 2571-7.
  12. Ebben, J.D., et al., Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine. World Neurosurg, 2011. 76(3-4): p. 270-5.
  13. World's 1st IPS Transplant Performed, Care2
  14. Première transplantation de cellule iPS chez l'homme, BE Japon, numéro 701, 26 septembre 2014, Ambassade de France au Japon / ADIT
  15. Imamura M., et al., Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev, 2014. 81(1):2-19.
  16. http://onlinelibrary.wiley.com/doi/10.1002/stem.471/abstract;jsessionid=AAC5C7EB16D2C5D12C3C8CE27756F9AA.d03t04
  17. Zhang, G., et al., Induced pluripotent stem (iPS) cell consensus genes: Implication for the risk of tumorigenesis and cancers in iPS cell therapy. Stem Cells Dev, 2011.
  18. Huangfu, D., et al., Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 2008. 26(11): p. 1269-75.
  19. Zhou, H.Y., et al., Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009. 4(5): p. 381-384.
  20. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-30.