Cargill Gilston Knott

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Knott.
Cargill Gilston Knott
Description de cette image, également commentée ci-après
Cargill Gilston Knott
Naissance
Flag of Scotland.svg Penicuik, Écosse
Décès
Flag of Scotland.svg Édimbourg, Écosse
Nationalité Flag of Scotland.svg Écossaise
Profession
Physicien, mathématicien, conseiller étranger auprès du gouvernement de Meiji
Formation
Distinctions

Cargill Gilston Knott ( - ) est un physicien et mathématicien écossais qui fut pionnier dans le domaine de la sismologie. Commençant sa carrière au Japon, il devint plus tard compagnon de la Royal Society, secrétaire de la Royal Society of Edinburgh, et président de la société météorologique d'Écosse.

Biographie[modifier | modifier le code]

Enfance et formation[modifier | modifier le code]

Knott est à né à Penicuik dans le Midlothian. Scolarisé au lycée d'Arbroath, il intégra ensuite l'université d'Édimbourg où il rencontra James Alfred Ewing. Il travailla sur l'électricité et le magnétisme et obtint son doctorat en 1879.

Knott est le beau-frère de l'écrivain James Main Dixon[1].

Au Japon[modifier | modifier le code]

Peu après la restauration de Meiji de 1868 au Japon, le gouvernement japonais commença un vaste programme de construction de phares côtiers afin de faciliter la navigation et le commerce extérieur et embaucha pour cela l'ingénieur écossais Richard Henry Brunton. Celui-ci réalisa très vite que les nouveaux phares devraient forcément pouvoir résister aux tremblement de terre, fréquents au Japon, et il exhorta les autorités à embaucher d'autres scientifiques britanniques pour introduire les dernières découvertes de la science occidentale et, ainsi, espérer mieux comprendre les séismes, savoir les prédire, et peut-être aussi réussir à atténuer leur pouvoir destructeur. John Milne fut engagé en 1874 en tant que professeur de géologie et de minage, et James Alfred Ewing en 1878 en tant que professeur de physique et d'ingénierie à l'université impériale de Tokyo. Avec des collègues japonais, Milne, Ewing, Briton, Thomas Lomar Gray et d'autres, mirent au point un prototype du sismographe moderne.

Lorsqu'Ewing retourna en Écosse en 1883, le recteur de l'université impériale de Tokyo écrivit à Lord Kelvin pour lui demander qui il recommandait pour succéder à Ewing. Lord Kelvin désigna Knott, une recommandation soutenu par Ewing lui-même. Ainsi, Knott devint professeur de physique et d'ingénierie à l'université impériale de Tokyo[2]. Pendant neuf ans, il travailla étroitement avec Milne, Gray et le sismologue japonais Omori Fusakichi pour établir un réseau de sismomètres de surveillance dans tous l'empire du Japon. Knott a également enseigné les mathématiques, l'acoustique et l'électromagnétisme à l'université impériale de Tokyo.

Knott a également entrepris la première étude géomagnétique du Japon, assisté par le géophysicien Aikitsu Tanakadate, grâce à laquelle fut dessiné la première carte japonaise des zones sensibles aux tremblement de terre. Knott contribua significativement aux calculs mathématiques et aux analyses de données. L'une de ses innovations fut d'appliquer la technique de l'analyse de Fourier dans la détection des séismes. Deux chapitres de son livre de 1908 The Physics of Earthquake Phenomena sont consacrés à cette méthode. Knott espérait qu'elle permettrait de mieux prévoir les apparitions prochaines de tremblements de terre.

Avant de quitter le Japon en 1891, Knott fut décoré de l'ordre du Soleil levant des mains mêmes de l'empereur Meiji[3].

Retour en Écosse[modifier | modifier le code]

Pendant son séjour au Japon, Knott avait commencé à développer des équations mathématiques décrivant comment les vibrations sismiques étaient réfléchies et transmises entre la surface et le fond de la mer. Après être retourné à l'université d'Édimbourg en 1892, il élargit ses recherches en décrivant le comportements des ondes sismiques entre deux types de roches différentes. Les "équations de Knott" furent à la base de nombreux développements en sismologie, comme pour les techniques modernes de prospection du pétrole et du gaz naturel.

Après être rentré en Écosse, Knott reprit son travail de mathématicien, développant l'algèbre des quaternions de son professeur et mentor Peter Guthrie Tait. Lorsque l'obligation de faire une algèbre linéaire unique est apparu dans les années 1890 et que les révisionnistes ont commencé à publier des articles, Knott participa au mouvement avec son article majeur "Récentes innovations en théorie vectorielle". Comme M.J. Crowe le rappelle dans son livre, ce document convainquit les théoriciens rétifs qui espéraient trouver une associativité dans des systèmes tels que les quaternions hyperboliques. Knott note :

« L'hypothèse que le carré d'un vecteur unitaire soit positif conduit à une algèbre dont la caractéristique est que les quantités sont non-associatives. »

Knott négligea évidemment l'existence des anneaux de coquaternions. Néanmoins, Crowe déclare que Knott "écrivait avec soin et minutie" et que "seul Knott connaissait bien son système d'opposants".

Pour faire un manuel sur les quaternions, les professeurs et les élèves se sont appuyés sur le livre Introduction to Quaternions de Tait & Kelland publié en 1873 et 1882. Il semblerait que Knott préparait une troisième édition en 1904. D'ici là, The Universal Algebra d'Alfred North Whitehead (1898) prenait en compte certains fondements des quaternions que les étudiants rencontraient en algèbre matricielle. Dans l'introduction de Knott pour les manuels scolaires, il déclare "Analytiquement, le quaternion est maintenant connu pour avoir sa place dans la théorie générale des nombres complexes et des groupes contigus...". Ainsi il était conscient de la diversité rencontrée dans les mathématiques modernes, et que les quaternions n'étaient qu'un élément parmi d'autres.

Pendant son séjour au Japon, Knott fut élu compagnon de la Royal Society of Edinburgh. Il en devint secrétaire général en 1912. Il fut aussi l'un des fondateurs de la société de mathématiques d'Édimbourg. Knott fut socialement actif dans sa communauté, par exemple dans l'enseignement de l'école du dimanche et dans les affaires religieuses avec l'église libre unie d'Écosse. Il meurt dans sa demeure de Newington à Édimbourg le 26 octobre 1922.

Publications partielles[modifier | modifier le code]

  • Earthquake Frequency (1886)
  • Electricity and Magnetism (1893)
  • The Physics of Earthquake Phenomena (1908)
  • Life and Scientific Work of Peter Gutherie Tait. Supplementing the Two Volumes of Scientific Papers Published in 1898 and 1900 (1911)
  • Physics, An Elementary Textbook (1913)
  • Napier tercentenary memorial volume (1915)
  • The Propagation of Earthquake Waves through the Earth (1920)

Voir aussi[modifier | modifier le code]

Références[modifier | modifier le code]

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Cargill Gilston Knott » (voir la liste des auteurs).
  • K.E. Bullen (1973) "Knott, Cargill Gilston" in Dictionary of Scientific Biography, C.C. Gillespie editor, published by American Council of Learned Societies.
  • M.J. Crowe (1967) A History of Vector Analysis, esp. pp. 200–5.
  • C.G. Knott (1893) "Recent innovations in vector theory" Proceedings of the Royal Society of Edinburgh 9:212–37.Synopsis in Nature 47:590–3.
  • E.T. Whittaker (1922) "Cargill Gilston Knott" (obituary) Proceedings of the Royal Society of Edinburgh 43:237 – 48. Includes a substantial but partial bibliography.
  • (en) Raymond Flood, Kelvin: Life, Labours and Legacy, Oxford University Press,
  1. (en) « Former Fellows of the Royal Society of Edinburgh », Royal Society of Edinburgh (consulté le 2 septembre 2010)
  2. Flood, Kelvin, Labor; Labors and Legacy. Pp.218
  3. Penicuik Community Development Trust (UK): « Cargill Gilston Knott »(ArchiveWikiwixArchive.isGoogleQue faire ?) (consulté le 24 mars 2013)

Liens externes[modifier | modifier le code]