Autophagie

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 25 mars 2020 à 15:03 et modifiée en dernier par Lamiot (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Mécanisme de l'autophagie.

L’autophagie (du grec αυτο : « soi-même », et φαγειν « manger »), autolyse ou autophagocytose, est un mécanisme physiologique, intracellulaire, de protection et de recyclage d'éléments cellulaires : les organites indésirables ou endommagés, un pathogène introduit dans la cellule, des protéines mal repliées... sont ainsi collectés et tranportés vers les lysosomes pour être dégradés. Une partie du cytoplasme est ainsi recyclé par ses propres lysosomes[1]. Ce mécanisme est aussi une source d’énergie et d’acides aminés dans des conditions stressantes pour la cellule, comme l’hypoxie, le manque de nutriments ou l’exposition à des traitements médicamenteux[2],[3].

Le terme autophagie regroupe plusieurs voies de dégradation lysosomale des constituants cellulaires. Ces voies diffèrent surtout par le site de séquestration du "fret" et par le type et la taille de la "cargaison" concernée[4]. Elles sont notamment la microautophagie, l’autophagie réalisée par des protéines chaperonnes, et la macroautophagie (la forme principale)[5],[6].
La macroautophagie, appelée couramment autophagie, est la capture dans une double membrane lipidique (appelé "autophagosome"), de protéines ou composés cellulaires, puis la dégradation de ces composés après fusion avec un lysosome. C’est la seule voie qui puisse dégrader massivement des macromolécules et des organites. C’est une voie de dégradation alternative à celle du protéasome. En permettant le renouvellement de composants cytoplasmiques endommagés, ce mécanisme est essentiel à l'homéostasie cellulaire et parfois d'éviter l'apoptose.

L'histolyse (du grec ἱστος signifiant « tissu ») est le même processus, mais intervenant lors d'une métamorphose, il est utile à l'organisme (par exemple, les amphibiens[7]). L'histolyse est également présente au cours du développement embryonnaire[8].

Le dysfonctionnement de l'autophagie est source de maladies graves (neurodégénérescence, cancer...)[4].

Yoshinori Ohsumi obtient le prix Nobel de physiologie ou médecine en 2016 pour avoir découvert des marqueurs biologiques de l'autophagie.

Historique

La découverte des gènes Atg (autophagy related genes), au milieu des années 1990 chez la levure a été importante, non seulement pour la dissection en termes moléculaires de la macroautophagie, mais aussi pour comprendre son importance en physiologie et physiopathologie. Il existe plus de trente gènes Atg dont plus de la moitié est impliquée dans l’autophagie. Ces gènes sont présents aussi bien dans la levure que dans les cellules de mammifères.

Mode de fonctionnement

Les cinq étapes de l'autophagie sont l'initiation, la nucléation, l'expansion, la maturation puis la dégradation xxx.

Au plan cellulaire, la macroautophagie, la forme principale[9], débute par la formation d’une double membrane phospholipidique dans la cellule, dite phagophore, qui s’allonge, séquestre des constituants du cytoplasme avant de se refermer sur elle même. L’autophagosome ainsi formé va ensuite fusionner avec un lysosome pour dégrader les composés capturées. Plusieurs compartiments cellulaires (réticulum endoplasmique, appareil de Golgi et réseau trans-golgien formant le système endomembranaire) et la membrane plasmique participeraient probablement à la formation de l’autophagosome.
Une quinzaine de protéines Atg sont nécessaires à sa biogenèse.

Mécanisme moléculaire

Le déroulement du processus autophagique repose essentiellement sur deux systèmes de conjugaison analogues aux systèmes d'ubiquitination des protéines :

  • le premier conjugué, formé des protéines Atg5-Atg12, permet le recrutement du deuxième complexe sur l'autophagosome en formation, puis est recyclé vers le cytosol.
  • le deuxième conjugué résulte de la conjugaison de la protéine Atg8 (MAP-LC3 chez les mammifères) à la phosphatidyléthanolamine (PE) et s’incorpore dans la membrane du pré-autophagosome. LC3 existe donc sous forme cytosolique (LC3-I) ou associé au phagosome (LC3-II = Atg8-PE). LC3-II pourrait jouer une fonction structurale permettant l’élongation et la formation de l’autophagosome mature, et constitue un marqueur cellulaire d'identification des autophagosomes.

L'autophagie sélective de constituants cellulaires est réalisée grâce à des protéines cargos, notamment SQSTM1/p62. p62 se lie aux protéines et composés ubiquitinés et les fixent/séquestrent à la membrane du phagophore grace à sa liaison avec LC3-II.[10] p62 est dégradé une fois que l'autophagosome a fusionné avec un lysosome, ce qui fait de lui un bon marqueur pour estimer l'activité autophagique de la cellule[11].

Déclenchement

L’autophagie peut être stimulée en conditions de stress, telles que la carence en nutriments, l’absence de facteurs de croissance ou l’hypoxie. La protéine mTOR (mammalian target of rapamycin) joue un rôle-clé dans l’intégration de ces signaux et la régulation de l’autophagie. Lorsqu’elle est activée, mTor inhibe la voie de l’autophagie, mais son inactivation (à la suite d'une carence en nutriments, par exemple) permet de lever l'inhibition et donc de lancer l’autophagie. Cette enzyme est la cible de la rapamycine (une drogue classiquement utilisée pour induire l’autophagie). Une autre voie déclenchant l'autophagie fait intervenir le complexe Atg6 (aussi appelé Bécline 1)/PI3 kinase de classe III. Ce complexe participe à l’induction de l’autophagie, à l’incurvation du pré-autophagosome et à la formation de l’autophagosome.

Rôles physiologiques

L’autophagie joue un rôle important dans :

  • le maintien de l’homéostasie car elle permet l’élimination et le remplacement continuel des protéines et des organites non fonctionnels ;
  • l’adaptation et la survie des cellules soumises à des conditions de stress ;
  • l’immunité innée à l’échelle de la cellule car elle permet d’éliminer des pathogènes intracellulaires ;
  • l’immunité adaptative car la dégradation des protéines par autophagie génère des peptides qui seront ensuite présentés sur le complexe majeur d'histocompatibilité (CMH) ;
  • le vieillissement cellulaire. En effet, l'autophagie des mitochondries, appelé mitophagie, permet la recyclage des mitochondries dysfonctionnelles[12] qui génère notamment du stress oxydatif causant des dommages à la cellule. Par ce biais, elle à un rôle protecteur contre le vieillissement cellulaire.[13]
  • le fonctionnement des neurones. Les mitochondries étant particulièrement actives dans ces cellules, leur renouvellement joue un rôle essentiel pour empêcher un stress oxydatif trop important, et la dégénérescence[14],[15].

Role dans le Cancer

L’identification de molécules impliquées dans le contrôle et l’exécution de l’autophagie a mis en lumière une étroite relation entre l’autophagie et la progression tumorale. Les cellules cancéreuses présentaient généralement une capacité autophagique plus réduite que les cellules normales. Le rôle anti-tumoral de l’autophagie est suggéré par son implication dans la réduction de l’instabilité chromosomique, de la prolifération et de l’inflammation des cellules tumorales. L’autophagie peut aussi être un mécanisme pro-tumoral en permettant la survie des cellules tumorales exposées à des variations de leur micro-environnement (hypoxie, carence nutritionnelle…). Le processus autophagique est induit en réponse à divers traitements anti-cancéreux. Cette réponse peut s'avérer être un mécanisme permettant la survie des cellules, ou favorisant et amplifiant la mort induite par ces traitements.

Role contre les maladies neurodégénératives

Une caractéristique commune à de nombreuses maladies neurodégénératives est l’accumulation de protéines mutées ou toxiques et leur agrégation dans le cytoplasme. Ces maladies sont désignées sous le terme de « protéinopathies » et comprennent notamment la maladie de Huntington, la maladie d’Alzheimer ou la maladie de Machado-Joseph (SCA-3). Ces agrégats de protéines anormales se formeraient, par exemple, à la suite d'une diminution de l’activité du protéasome. Leur présence entraîne une augmentation de cette autophagie induite qui, dans les premiers stades de la maladie, est assez efficace pour assurer leur élimination. Cependant, à un stade plus avancé, l’autophagie induite n’est plus suffisante, et des inclusions protéiques se forment dans les cellules ; la stimulation de l’autophagie (par un agent pharmacologique) pourrait s’avérer efficace pour éliminer ces inclusions et ainsi lutter contre la neurodégénérescence. Dans le cas de la maladie de Machado-Joseph (SCA-3, Spino Cerebellar Ataxia - 3), cette technique de stimulation de l'autophagie est actuellement étudiée par les équipes de Luis Pereira de Almeida, Center for Neurosciences and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal[16].

Notes et références

  1. (en) NY Lin, C Beyer, A Gießl et al., « Autophagy regulates TNFα-mediated joint destruction in experimental arthritis », Ann. Rheum. Dis.,‎ (PMID 22975756, DOI 10.1136/annrheumdis-2012-201671, lire en ligne).
  2. (en) Michael N. Moore, J. Icarus Allen et Paul J. Somerfield, « Autophagy: Role in surviving environmental stress », Marine Environmental Research, vol. 62,‎ , S420–S425 (DOI 10.1016/j.marenvres.2006.04.055, lire en ligne, consulté le )
  3. (en) Noboru Mizushima, Akitsugu Yamamoto, Makoto Matsui et Tamotsu Yoshimori, « In Vivo Analysis of Autophagy in Response to Nutrient Starvation Using Transgenic Mice Expressing a Fluorescent Autophagosome Marker », Molecular Biology of the Cell, vol. 15, no 3,‎ , p. 1101–1111 (ISSN 1059-1524 et 1939-4586, PMID 14699058, PMCID PMC363084, DOI 10.1091/mbc.e03-09-0704, lire en ligne, consulté le )
  4. a et b (en) Sahar Abo ElFadl, « AUTOPHAGY; Recent Advances in Health and Disease », Journal of Medical Histology, vol. 2, no 1,‎ , p. 1–10 (ISSN 2536-930X, DOI 10.21608/jmh.2018.5225.1040, lire en ligne, consulté le )
  5. (en) J Lee, S Giordano et J Zhang, « Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling », Biochem. J., vol. 441, no 2,‎ , p. 523–540 (PMID 22187934, PMCID 3258656, DOI 10.1042/BJ20111451, lire en ligne).
  6. (en) Mizushima N, Ohsumi Y, Yoshimori T, « Autophagosome formation in mammalian cells », (PMID 12576635), p. 421–429.
  7. D. L. Stocum, « Amphibian Regeneration and Stem Cells », dans Regeneration: Stem Cells and Beyond, vol. 280, Springer Berlin Heidelberg, (ISBN 978-3-642-62321-9, DOI 10.1007/978-3-642-18846-6_1, lire en ligne), p. 1–70
  8. (en) F.J. Edwards, « Development and histolysis of the indirect flight muscles in Dysdercus intermedius », Journal of Insect Physiology, vol. 15, no 9,‎ , p. 1591–1599 (DOI 10.1016/0022-1910(69)90179-6, lire en ligne, consulté le )
  9. (en) B Levine, N Mizushima et HW Virgin, « Autophagy in immunity and inflammation », Nature, vol. 469, no 7330,‎ , p. 323–335 (PMID 21248839, PMCID 3131688, DOI 10.1038/nature09782).
  10. (en) Serhiy Pankiv, Terje Høyvarde Clausen, Trond Lamark et Andreas Brech, « p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy », Journal of Biological Chemistry, vol. 282, no 33,‎ , p. 24131–24145 (ISSN 0021-9258 et 1083-351X, PMID 17580304, DOI 10.1074/jbc.M702824200, lire en ligne, consulté le )
  11. Karolina Pircs, Peter Nagy, Agnes Varga et Zsolt Venkei, « Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila », PLoS ONE, vol. 7, no 8,‎ (ISSN 1932-6203, PMID 22952930, PMCID 3432079, DOI 10.1371/journal.pone.0044214, lire en ligne, consulté le )
  12. (en) Sarah Pickles, Pierre Vigié et Richard J. Youle, « Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance », Current Biology, vol. 28, no 4,‎ , R170–R185 (DOI 10.1016/j.cub.2018.01.004, lire en ligne, consulté le )
  13. (en) Ruoyang Shi, Matthew Guberman et Lorrie A. Kirshenbaum, « Mitochondrial quality control: The role of mitophagy in aging », Trends in Cardiovascular Medicine, vol. 28, no 4,‎ , p. 246–260 (DOI 10.1016/j.tcm.2017.11.008, lire en ligne, consulté le )
  14. (en) Elayne M. Fivenson, Sofie Lautrup, Nuo Sun et Morten Scheibye-Knudsen, « Mitophagy in neurodegeneration and aging », Neurochemistry International, vol. 109,‎ , p. 202–209 (PMID 28235551, PMCID PMC5565781, DOI 10.1016/j.neuint.2017.02.007, lire en ligne, consulté le )
  15. (en) H. Chen et D. C. Chan, « Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases », Human Molecular Genetics, vol. 18, no R2,‎ , R169–R176 (ISSN 0964-6906 et 1460-2083, PMID 19808793, PMCID PMC2758711, DOI 10.1093/hmg/ddp326, lire en ligne, consulté le )
  16. (en) « Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease », .

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes