Apprentissage par transfert

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L'apprentissage par transfert[1] (transfer learning en anglais) est l'un des champs de recherche de l'apprentissage automatique qui vise à transférer des connaissances d'une ou plusieurs tâches sources vers une ou plusieurs tâches cibles. Il peut être vu comme la capacité d’un système à reconnaître et appliquer des connaissances et des compétences, apprises à partir de tâches antérieures, sur de nouvelles tâches ou domaines partageant des similitudes.

Articles connexes[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. (en) Sinno Jialin Pan et Qiang Yang, « A Survey on Transfer Learning », IEEE Transactions on Knowledge and Data Engineering, no 20(10),‎
  2. (en) John S. Bridle et Stephen J. Cox, « RecNorm: Simultaneous normalisation and classification applied to speech recognition », Conference on Neural Information Processing Systems (NIPS),‎ , p. 234–240
  3. (en) Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira et Jennifer Wortman Vaughan, « A theory of learning from different domains », Machine Learning Journal, no 79(1-2),‎ , p. 151–175
  4. (en) Yishay Mansour, Mehryar Mohri et Afshin Rostamizadeh, « Domain Adaptation: Learning Bounds and Algorithms », Proceedings of Conference on Learning Theory (COLT),‎