Algorithme du jour du Jugement dernier

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

L’algorithme de jour du Jugement dernier, ou méthode des jours pivots, ou méthode du clavedi, ou enfin méthode de Conway (à distinguer de la méthode de Conway pour le calcul de la date de Pâques), anglais : Doomsday rule ou Doomsday algorithm, est une méthode de calcul du jour de la semaine à une date précise. Elle fournit un calendrier perpétuel pour le calendrier grégorien et pour le calendrier julien. Le principe de cette méthode peut être étendu à d'autres calendriers solaires dont les règles d'intercalation sont celles du calendrier julien ou du calendrier grégorien.

Historique[modifier | modifier le code]

L'algorithme permettant le calcul mental fut élaboré à l'origine par John Conway[1],[2] en 1973, qui tira son inspiration des travaux de Lewis Carroll sur un algorithme pour un calendrier perpétuel[3],[4].

L'algorithme est suffisamment simple pour que tous ceux qui ont des connaissances arithmétiques puissent faire des calculs mentaux. Conway peut généralement donner la réponse correcte en moins de deux secondes. Pour améliorer ses capacités, il améliore ses capacités de calcul du calendrier par un ordinateur qui est programmé pour lui demander une date au hasard à chaque fois qu'il se connecte[5].

L'algorithme a été amélioré par les mathématiciens Chamberlain Fong et Michael Walterss[6], afin de simplifier les calculs mentaux intermédiaires. Leur variante est dénommée "11 sur impair", pour "Odd + 11" en anglais.

Le site du calendrier milésien[7] propose un exposé succinct de la méthode, et une traduction du mot doomsday utilisé dans ce contexte en clavedi.

Résumé de la méthode[modifier | modifier le code]

John Conway prend en compte le fait que chaque année compte un certain nombre de dates faciles à se rappeler qui tombent toutes le même jour de la semaine au cours d'une année donnée. Par exemple, les 4/4, 6/6, 8/8, 10/10, 12/12, et le dernier jour de février (le « 0 mars ») d'une même année tombent toutes le même jour de la semaine. Appelons jours pivots ou dates pivots ces jours, et jour clé ce jour de semaine caractéristique de l'année.

Les jours de semaine sont caractérisés par leur rang, un chiffre de 0 à 6, le reste d'une division euclidienne d'un nombre entier par 7. La méthode donne le jour clé de n'importe quelle année sous forme d'un tel chiffre.

Appliquer l'algorithme implique trois étapes :

  1. déterminer le « jour balise » pour le siècle, le jour clé de l'année 0 du siècle, que nous appellerons balise de siècle,
  2. calculer le décalage entre la balise de siècle et le jour clé de l'année, sur la base de la partie infraséculaire de l'année, c'est-à-dire les deux derniers chiffres, et en déduire le jour clé de l'année,
  3. choisir la date la plus proche parmi celles qui tombent sur un jour pivot (par exemple, les 4/4, 6/6, 8/8), et compter le nombre de jour (modulo 7) entre cette date et la date en question pour arriver au jour de la semaine.

Cette technique s'applique au calendrier grégorien et au calendrier julien, bien que leurs jours clés seront généralement différents pour une même année.

Numérotation des jours de semaine[modifier | modifier le code]

L'algorithme implique de considérer les jours de la semaine comme des nombres modulo 7: 0 pour dimanche, 1 pour lundi, 2 pour mardi, 3 pour mercredi, 4 pour jeudi, 5 pour vendredi et 6 pour samedi.

John Conway suggère de penser les jours de la semaine comme étant « Noneday » ou « Sansday » (pour dimanche, jour 0), « Oneday », « Twosday », « Treblesday », « Foursday », « Fiveday », et « Six-a-day ». Il y a des langues, comme le portugais et le galicien[N 1], qui fondent le nom des jours sur leur position dans la semaine. En français, on peut évoquer "L'un di" pour se rappeler que le nombre un correspond au lundi.

Jours pivots de l'année[modifier | modifier le code]

  • Le 4 janvier les années bissextiles, le 3 janvier les années communes
  • 0/3 : 0 mars, le dernier jour de février
  • 4/4 :
  • 6/6 :
  • 8/8 :
  • 10/10 :
  • 12/12 :
  • 9/5 et 5/9 : et
  • 11/7 et 7/11 : et
  • Les années bissextiles: 11/1 et 22/2., 11 janvier et 22 février. En année commune, il faut reculer d'une unité, on obtient alors 10/1 et 21/2.

Pour se rappeler le premier jour pivot, John Conway suggère la phrase: "le 3 les 3 premières années, le 4 la 4ème année" (s'agissant du cycle de quatre années finissant par l'année bissextile).

Pour se rappeler les jours des mois impairs de mai à novembre, John Conway suggère la phrase : "Je travaille de 9 heures à 5 heures au Seven-Eleven."

Jours-clés pour certaines années contemporaines du calendrier grégorien[modifier | modifier le code]

Le jour clé de l'année actuelle (2020) est samedi. Celui de l'année prochaine (2021) est dimanche.

Jours clés pour le calendrier grégorien
Lun. Mar. Mer. Jeu. Ven. Sam. Dim. Lun. Mar. Mer. Jeu. Ven. Sam. Dim.
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100


Quelques dates tombant le jour clé ou un jour proche[modifier | modifier le code]

Dates tombant le jour clé
Mois Date remarquable Moyen mnémotechnique Liste complète des dates du mois
Janvier Le 3 en année commune, le 4 en année bissextile. Le 3 les 3 premières années... 3, 10, 17, 24, 31
.. le 4 la 4ème année 4, 11, 18, 25
Janvier bissextile 11 janvier 11/1 4, 11, 18, 25
Janvier commun 10 janvier, veille du 11/1 11/1 - 1 3, 10, 17, 24, 31
Février bissextile 1er février 28 jours avant le "0 mars" 1, 8, 15, 22, 29
Février bissextile 22 février 22/2 1, 8, 15, 22, 29
Février commun "0 février" 28 jours avant le "0 mars" 7, 14, 21, 28
Février commun 21 février 22/2 - 1 7, 14, 21, 28
Février 14 février, tombe le jour clé en année commune

et la veille du jour clé en année bissextile

Mars "0 mars" Dernier jour de février 7, 14, 21, 28
Mars 21 mars Date de référence pour Pâques 7, 14, 21, 28
Avril 4 avril 4/4 4, 11, 18, 25
Mai 9 mai (lendemain du 8 mai et du 1er mai) 9/5 ("de 9h à 5h" ...) 2, 9, 16, 23, 30
Juin 6 juin 6/6 6, 13, 20, 27
Juillet 11 juillet 11/7 (".. au Seven-Eleven") 4, 11, 18, 25
Juillet 4 juillet, fête de l'Indépendance américaine) Une semaine avant 11/7 4, 11, 18, 25
Août 8 août 8/8 1, 8, 15, 22
Août 15 août, fête de l'Assomption Une semaine après 8/8 1, 8, 15, 22
Septembre 5 septembre 5/9 ("de 9h à 5h ...") 5, 12, 19, 26
Octobre 10 octobre 10/10 3, 10, 17, 24, 31
Octobre 31 octobre, Halloween Halloween et le jugement dernier 3, 10, 17, 24, 31
Novembre 7 novembre 7/11 ("... au Seven-Eleven") 7, 14, 21, 28
Décembre 12 décembre 12/12 5, 12, 19, 26

Avec l'habitude, chacun peut situer les dates importantes pour soi par rapport au jour clé. Par exemple:

  • la Saint-Valentin (déjà citée) tombe le jour clé en année commune, la veille du jour clé en année bissextile,
  • le 1er et le 8 mai tombent la veille du jour clé,
  • le 14 juillet tombe 3 jours après,
  • le 15 août, déjà cité, tombe le jour-clé,
  • le 11 novembre tombe 4 jours après,
  • Noël tombe la veille du jour clé, et il en est de même pour le jour de l'an suivant.

Étapes du calcul[modifier | modifier le code]

Dans ce qui suit, on appelle "rang" d'un élément d'une suite son ordre en considérant que 0 est l'ordre du premier élément.

Par exemple le rang de mardi est 2 dans la série de la semaine traditionnelle, où le premier jour, dimanche, a pour rang 0.

Cette définition est utile parce que le rang est obtenu en tant que reste d'une division euclidienne.

Décomposition de l'année[modifier | modifier le code]

L'année A, réputée positive, est décomposée en siècle et partie infraséculaire :

A = S + X, où 0 <= X < 100.

Les balises de siècle du calendrier grégorien[modifier | modifier le code]

Le cycle des dates et des jours de semaine du calendrier grégorien se reproduit à l'identique tous les 4 siècles. Il suffit donc de retenir les rangs de jour clé correspondant aux restes de la division du rang de siècle par 4.

Balise selon le rang de siècle
Rang de siècle 0 1 2 3
Exemples 1600

2000

1700

2100

1800

2200

1900

2300

Balise de siècle 2 0 5 3

On observe que la balise diminue de 2 modulo 7 chaque siècle à l'intérieur du cycle. En revanche, elle ne diminue que d'une unité lors d'une année multiple de 400, comme l'an 2000.

Si par exemple l'on cherche le jour de semaine du décès de Cervantès, le 23 avril 1616 du calendrier grégorien, la balise de siècle est 2.

Les balises de siècle du calendrier julien[modifier | modifier le code]

Chaque siècle, la balise diminue d'une unité modulo 7. Au 1er siècle, c'est-à-dire au siècle de rang 0, la balise est 0. Donc la balise du siècle de rang S est (-S) mod 7.

Si par exemple l'on cherche le jour de semaine du décès de Shakespeare, le 23 avril 1616 du calendrier julien, la balise de siècle est (-16) mod 7, c'est-à-dire (-2) mod 7, soit 5.

Ajout de la partie infraséculaire - méthode originale de John Conway[modifier | modifier le code]

John Conway décompose la partie infraséculaire du siècle en base 12, puis compte le nombre d'années bissextiles dans le reste de cette division.

X = 12 * Z + R, où 0 <= R < 12.

B = R div 4

Le jour-clé de l'année est la somme (jour_balise + Z + R + B) modulo 7.

Cette méthode fonctionne parce que, à l'intérieur d'un siècle, le jour-clé augmente d'un jour en douze ans, d'un jour chaque année, et d'un jour supplémentaire chaque année bissextile.

Ainsi pour 1616 grégorien, le jour clé est : 2 (balise de siècle) + 1 (16 div 12) + 4 (reste de la division précédente) + 1 (nombre d'années bissextiles entre 12 et 16) = 8 mod 7 = 1, lundi.

Et pour 1616 julien, le jour clé est : 5 (balise de siècle) + 1 + 4 + 1 = 11 mod 7 = 4, jeudi.

John Conway place mentalement les quatre termes de la formule sur les quatre derniers doigts d'une de ses mains, puis calcule le somme en plaçant successivement son pouce sur ces quatre doigts.

Identification du jour pivot du même mois[modifier | modifier le code]

On cherche ensuite un jour pivot dans le mois de la date cherchée. Par exemple, pour le 23 avril, le jour pivot est le 4 avril.

Ce jour pivot tombe le jour clé de l'année. Il suffit alors de chercher le jour de semaine de la date cherchée par différence avec le jour pivot.

Exemples:

  • En calendrier grégorien, le jour-clé de 1616 est lundi, donc le 4 avril tombe lundi, le 25 avril aussi, et le 23 avril 1616 est donc samedi, jour du décès de Cervantès.
  • En calendrier julien, le jour clé de 1616 est jeudi, le 4 avril tombe donc jeudi, de même le 25 avril, et le 23 avril 1616 est mardi, jour du décès de Shakespeare.

Cette gymnastique est aisée pour tous ceux qui peuvent déduire mentalement le jour de semaine d'une date d'un mois connaissant le jour de semaine d'une autre date du même mois.

Variante pour la partie infraséculaire - méthode "11 sur impair"[modifier | modifier le code]

La méthode "11 sur impair" - appelée à l'origine "Odd + 11" est une variante pour le calcul de la partie infraséculaire, c'est-à-dire les trois derniers doigts de la méthode originale de Conway. Elle a été publiée par Chamberlain Fong and Michael K. Walters[6] au 7e Congrès International de Mathématiques Industrielles et Appliquées (7th International Congress on Industrial and Applied Mathematics (2011)).

L'intérêt de cette méthode est de remplacer les calculs de Z, R et B supra par une suite de deux opérations très simples.

En calcul mental, on cherche à évaluer T, le jour-clé recherché, de la manière suivante:

  • Soit T la partie infraséculaire de l'année (les deux derniers chiffres)
  • Si T est impair, lui ajouter 11: T = T+ 11.
  • Diviser T par 2: T = T/2
  • Si T est impair, ajouter 11: T = T + 11
  • Rechercher le reste de la division de -T par 7: T = (-T) mod 7.
  • Ajouter la balise de siècle pour obtenir le jour clé de l'année, modulo 7.

Reprenons notre exemple de 1616. On considère 16, la partie infraséculaire.

  • T = 16
  • 16 est pair, on ne fait rien.
  • 16 div 2 -> 8.
  • 8 est pair, on ne fait rien.
  • (-8) mod 7 -> 6
  • Ajouter 6 à la balise de siècle et prendre le résultat modulo 7.

Avec le calendrier grégorien, il vient 2 + 6 = 8 = 1 mod 7, lundi.

Avec le calendrier julien, il vient 5 + 6 = 11 = 4 mod 7, jeudi.

Les valeurs pour lesquelles on cherche le reste de la division par 7 sont toujours inférieures à 70, en sorte qu'il suffit de chercher dans la table de multiplication par 7 la différence entre T et le produit immédiatement supérieur; dans l'exemple ci-dessus, on compare 8 à 14 pour obtenir 6. C'est la seule partie délicate de la méthode.

Lien avec d'autres clés annuelles pour le calcul du jour de semaine[modifier | modifier le code]

Le tableau suivant[8] résume les liens entre

  • le "clavedi" ou jour clé pour la méthode de Conway,
  • la lettre dominicale, ou la deuxième lettre dominicale dans le cas d'une année bissextile,
  • le jour de semaine du 1er octobre, qui est aussi le jour de semaine du premier janvier en année commune, utilisé notamment dans la méthode exposée par Lewis Carroll[9].
Jour-clé, lettre dominicale, jour de semaine du 1er octobre
Jour clé Lettre dominicale

année commune

Lettres dominicales

année bissextile

Jour de semaine

du 1er octobre

0 - dimanche C DC vendredi
1 - lundi B CB samedi
2 - mardi A BA dimanche
3 - mercredi G AG lundi
4 - jeudi F GF mardi
5 - vendredi E FE mercredi
6 - samedi D ED jeudi

Exemples[modifier | modifier le code]

Ces exemples utilisent tous la méthode "11 sur impair".

Epoque contemporaine[modifier | modifier le code]

John Conway suggère de connaître par cœur les balise de siècles de 1900 (3) et 2000 (2), pour couvrir rapidement les cas les plus courants.

Armistice du 11 novembre 1918[modifier | modifier le code]

  • 18 est pair, -> 18.
  • 18 div 2 -> 9.
  • 9 est impair, donc 9+11 -> 20.
  • 20 = 3*7 - 1, donc il faut retenir 1.
  • Le jour clé de 1918 est donc 3 + 1 -> 4, soit jeudi.
  • Le 7 novembre 1918, jour pivot, est un jeudi, et le 11 novembre, 4 jours plus tard, un lundi.

Eclipse solaire du 11 août 1999[modifier | modifier le code]

  • 99 est impair, donc 99 + 11 -> 110.
  • 110 div 2 -> 55.
  • 55 est impair, donc 55 + 11 -> 66.
  • 66 = 10*7 - 4, donc on retient 4.
  • Le jour clé de 1999 est donc 3+4 = 7 -> 0, dimanche.
  • Le 8 août 1999, jour pivot, est dimanche, le 11 août 1999 est mercredi.

Eclipse solaire prévue le 17 février 2026[modifier | modifier le code]

  • 26 est pair, -> 26
  • 26 div 2 -> 13
  • 13 est impair, donc 13 + 11 -> 24
  • 24 = 4*7 -4 -> 4
  • Le jour clé de 2026 est donc 2 + 4 -> 6, soit samedi.
  • Le dernier jour de février, jour pivot, est le 28 (année commune), c'est un samedi, le 14 février aussi, donc le 17 février 2026 est un mardi.

Julien et grégorien[modifier | modifier le code]

Passage de l'Angleterre au calendrier grégorien, le 14 septembre 1752[modifier | modifier le code]

  • 52 est pair, -> 52.
  • 52 div 2 -> 26.
  • 26 est pair -> 26.
  • 26 = 4*7 - 2, donc -> 2
  • La balise de siècle de 1700 grégorien est 0, donc le jour clé de 1752 grégorien est 0 + 2, mardi.
  • Le 7 septembre 1752 grégorien, jour pivot, est un mardi, le 14 septembre 1752 grégorien est aussi mardi.

Dernier jour du calendrier julien en Angleterre, le 2 septembre 1752[modifier | modifier le code]

  • La partie infraséculaire est la même que précédemment, 2.
  • La balise de siècle est (-17) mod 7 -> 4
  • Le jour clé de 1752 julien est 2 + 4 -> 6, samedi.
  • Le 7 septembre 1752 julien, jour pivot, est un samedi, le 2 septembre 1752 julien est lundi, veille du mardi 14 septembre grégorien.


Notes[modifier | modifier le code]

  1. Le galicien peut utiliser soit les noms d'origine latine, soit leur positionnement dans la semaine, par exemple « lundi » est « luns » ou « segunda feira » (Dicionario Real Academia Galega).

Sources[modifier | modifier le code]

Références[modifier | modifier le code]

  1. Conway 1973, p. 28–31
  2. Guy, Conway et Berlekamp 1982, p. 795–797
  3. Carroll 1887
  4. Gardner 1996, p. 24-26
  5. Alpert 1999
  6. a et b (en) Chamberlain Fong, Michael K. Walters, « Methods for Accelerating Conway's Doomsday Algorithm (part 2) », 7th International Congress of Industrial and Applied Mathematics (2011),‎ (lire en ligne)
  7. Louis-Aimé de Fouquières, « Semaines », sur calendriermilesien.org (consulté le 18 décembre 2019)
  8. Louis-Aimé de Fouquières, L'Heure milésienne, Paris, Édilivre, , 142 p. (ISBN 978-2-334-23604-1), p. 114
  9. (en) Lewis Carroll, « To Find the Day of the Week for Any Given Date », Nature,‎

Bibliographie[modifier | modifier le code]

  • John Horton Conway, Tomorrow is the Day After Doomsday, vol. 36, Eureka,
  • (en) Richard Guy, John Horton Conway et Elwyn Berlekamp, Winning Ways : For Your Mathematical Plays, vol. 2, Londres, Academic Press, (ISBN 978-0-12-091102-8)
  • (en) Lewis Carroll, « To Find the Day of the Week for Any Given Date », Nature,‎ (DOI 10.1038/035517a0)
  • (en) Martin Gardner, The Universe in a Handkerchief: Lewis Carroll's Mathematical Recreations, Springer-Verlag, coll. « Games, Puzzles, and Word Plays »,
  • (en) Mark Alpert, « Not Just Fun and Games », Scientific American,‎ (DOI 10.1038/scientificamerican0499-40)
  • (gl) Dicionario Real Academia Galega (lire en ligne)