Aller au contenu

Espace R0

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 16 avril 2022 à 08:46 et modifiée en dernier par OrlodrimBot (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En topologie, un espace symétrique (ou espace R0) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation, plus faible que la propriété usuelle d'espace séparé.

Définition

[modifier | modifier le code]

Un espace topologique E est R0 si pour toute paire d'éléments topologiquement discernables x et y de E (c’est-à-dire qu'il existe un voisinage de l'un qui ne contient pas l'autre), il existe un ouvert contenant x et pas y et un ouvert contenant y et pas x.

Propriétés

[modifier | modifier le code]

Soit E un espace topologique. Les propriétés suivantes sont équivalentes :

  • E est un espace R0 ;
  • Pour tout x de E, l'adhérence de {x} ne contient que les points dont x n'est pas topologiquement distinct ;
  • L'ultrafiltre principal en x converge seulement vers les points dont x n'est pas topologiquement distinct ;
  • Le quotient de Kolmogorov de E est T1 ;
  • Tout ouvert est une réunion de fermés.

Un espace est T1 si et seulement s'il est à la fois R0 et T0.

Soit ℤ l'ensemble des entiers relatifs. Pour tout n ∈ ℤ, on pose Gn = ℤ\{n, n + 1} si n est pair et Gn = ℤ\{n – 1, n} si n est impair. L'ensemble des Gn est une prébase sur ℤ : les réunions quelconques d'intersections finies de parties de ℤ de la forme Gn constituent une topologie sur ℤ. L'espace topologique ainsi créé est R0 ; il n'est en revanche pas T0 (et donc pas T1) : en effet, pour tout entier pair n, les points n et n+1 sont indiscernables.

Notes et références

[modifier | modifier le code]
(de) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en allemand intitulé « R0-Raum » (voir la liste des auteurs).