Tourbillon de poussière

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Tourbillon de poussière à Johnsonville, Caroline du Sud

Un tourbillon de poussière se forme par beau temps, lorsque de l'air sec et instable entre en rotation et soulève la poussière ou le sable du sol. Les tourbillons de poussières sont appelés willy-willies[1],[2]en Australie, d'après un mot aborigène, et dust devils aux États-Unis. Les Arabes pensaient que ces phénomènes étaient liés aux djinns.

Ces tourbillons ont un diamètre allant de quelques centimètres à plus de 10 mètres et ont une extension verticale de quelques mètres à plus de mille mètres. La plupart des tourbillons de poussière ne sont pas dangereux mais certains sont assez puissants pour soulever des objets lourds. Ainsi, le 7 mai 2006, à Trenton (Dakota du Nord) une petite fille de 4 ans qui jouait sur un trampoline fut soulevée à 8 mètres d'altitude, et en réchappa avec des blessures mineures[3].

Principes physiques[modifier | modifier le code]

Cause[modifier | modifier le code]

Dans une région où l'insolation est importante, l'air se réchauffe près de la surface du sol. Cette chaleur se transmet verticalement par radiation à une couche d'air plus ou moins épaisse. Si l'air est sec dans cette couche, le gradient de température suit l'adiabatique sèche et est très instable.

Comme le sol n'est pas chauffé uniformément, il y aura des différences entre deux points voisins du sol. L'air plus chaud se déplaçant vers une zone plus fraîche va donc subir une poussée d'Archimède vers le haut et entrer en convection. L'air montant sera remplacé par de l'air provenant d'un autre point au sol et selon la configuration des vents, ceci pourra engendrer une rotation de l'air.

Les conditions favorables à la production d'un tourbillon de poussière sont :

  • Air sec dans la couche entre la surface et 700 hPa
  • Différence entre la température et le point de rosée de surface d'au moins 16 °C
  • Faibles vents dans la couche entre la surface et 850 hPa
  • Zone de surface où le réchauffement peut varier (bordure entre un stationnement asphaltée et le gazon par exemple).

La hauteur et le diamètre du tourbillon dépendent de l'instabilité et de la sécheresse de l'air. En regardant un diagramme thermodynamique, comme un téphigramme ou un émagramme, on peut évaluer l'Énergie Potentielle de Convection Disponible (EPCD) et donc l'intensité potentielle du tourbillon.

La formation des tourbillons de poussière est similaire à celle des très faibles tornades mais comme l'air est sec, aucune condensation ne se formera et donc pas de nuage. Au contraire des tornades, les tourbillons de poussières ne peuvent aller chercher les vents des niveaux supérieurs pour leur rotation ce qui en limite leur puissance.

Endroits favorables au développement[modifier | modifier le code]

Les tourbillons de poussières peuvent se produire partout où sont réunies les conditions nécessaires : air sec et instable, différence de réchauffement au sol. Ils peuvent même se produire en hiver au-dessus d'un sol recouvert d'une fine poudre de neige et donner des tourbillons de neige. Dans les climats tempérés, ils se produisent le plus souvent au printemps alors que l'air est encore sec et que les journées allongent. Dans les déserts, ils sont très courants en toute saison car l'air y est sec et chaud par définition. En ville, ils seront de courte durée car les maisons et autres bâtiments les empêchent de circuler en toute liberté et ils meurent souvent en frappant un obstacle. On les voit le plus souvent dans les stationnements ou autre endroits qui absorbent plus d'énergie que les zones environnantes.

Activité électrique[modifier | modifier le code]

Les particules de poussières en se déplaçant vont produire de l'électricité statique et lorsque le champ est assez intense dans le tourbillon (plus de 10 000 volts par mètre), cela peut générer une faible décharge et un signal radio[4].

Tourbillons similaires[modifier | modifier le code]

Tourbillon de feu[modifier | modifier le code]

Article détaillé : Tempête de feu.
Un tourbillon de flammes

Les conditions favorables à un tourbillon de poussière peuvent se retrouver dans les cas d'un feu intense. En effet, les différences de températures autour d'un feu de forêt ou d'un large brasier vont générer une circulation de surface des zones plus froides vers la source de chaleur. Si la masse d'air est instable, un tourbillon se formera et les débris de l'incendie y seront aspirés[5]. Le tourbillon peut se retrouver dans la zone en flammes ou à l'extérieur, et propage l'incendie en projetant des tisons à de grandes distances.

La plupart des feux de forêt produisent ce type de tourbillon qui auront un diamètre de quelques mètres et une hauteur de 10 à 50 mètres. Cependant, on a rapporté des colonnes de feu de plus de 1 kilomètre de hauteur produisant des vents de plus de 160 km/h et persistant plus de vingt minutes [6]. On peut appliquer des techniques de prévision similaires à celles pour les tourbillons de poussières pour les prévoir. Plusieurs chercheurs travaillent à modéliser le phénomène afin de mieux le comprendre et le prévoir[7],[8].

Ces tourbillons peuvent être très dangereux. Par exemple, à la suite du tremblement de terre de Kantō de 1923, au Japon, l'île de Honshū a été frappée d'un embrasement généralisé éclair dans lequel un énorme tourbillon de feu a tué 38 000 personnes en quinze minutes dans le secteur de Hifukusho-Ato de la ville de Tokyo[9]. On peut également mentionner les nombreux tourbillons de ce type qui se formèrent après que la foudre eut mis le feu au dépôt de pétrole de San Luis Obispo (Californie) le 7 avril 1926, produisant des dommages structuraux et tuant deux personnes. Des milliers de ces tourbillons furent vus durant les quatre jours que dura le brasier, dont le plus gros propulsa des débris à 5 kilomètres du site [10].

Un autre exemple est celui du 26 août 2010 au Brésil, alors qu'un tourbillon de feu a été filmé dans l'état de São Paulo. Suite à une longue période de sécheresse, un feu près de la ville d'Araçatuba a servi de déclencheur au tourbillon qui a duré une vingtaine de minutes. Il a atteint plusieurs centaines de mètres de hauteur et les vents ont été estimés à 160 km/h[11]. Il s'agissait d'un événement rare dans ce pays[11].

Tourbillon de neige[modifier | modifier le code]

Tourbillon soulevant une fine couche de neige

Un cas particulier de tourbillon se produit en hiver quand ce dernier se développe au-dessus d'une couche de neige très fine. Bien que les conditions d'instabilité, de vents faibles et de sécheresse de l'air puissent être rencontrées dans un anticyclone hivernal, ces trombes sont assez rares. En effet, il est plus difficile de trouver des zones adjacentes ayant une température très différente permettant l’initiation du mouvement de l’air alors que la neige a tendance à recouvrir tout le sol.

Tourbillons sur Mars[modifier | modifier le code]

La Terre n'est pas le seul endroit où des tourbillons de poussière ont été vus. Dès les missions Viking des années 1970, on pouvait en remarquer sur la planète rouge et en 1997, le Mars Pathfinder détectait un tourbillon lui passant dessus[12],[13]. La traînée noire dans la photo de droite est le résultat d'un tel phénomène sur Mars. Le point le plus noir est le tourbillon lui-même qui remonte la paroi d'un cratère. On observe même un large cyclone sec sur cette planète et qui provient d'une telle origine.

Tourbillon sur Mars, photographié par la sonde Spirit
Tourbillon de poussière sur Mars, photographié par Mars Global Surveyor.

Utilisation en vol à voile[modifier | modifier le code]

Les tourbillons de poussière peuvent être appréciés par les pilotes de planeur. Ils servent de marqueurs d'ascendances puissantes qui se produisent principalement dans les régions désertiques. L'entrée dans le tourbillon se fait dans le sens opposé au sens de rotation afin d'augmenter la vitesse du planeur par rapport à l'air ambiant.

Le sable peut cependant endommager la verrière des planeurs ainsi que le fuselage et les turbulences associées au phénomène peuvent être violentes. Le tout peut donc entraîner une perte de contrôle de l'aéronef, ce qui est dangereux près du sol.

Notes[modifier | modifier le code]

  1. (fr) Glossaire terminologique de Météo-France
  2. (en) Symonds,Steve Willy Willies and other Weird Winds télévision australienne ABC
  3. (en) Nouvelle de CNN
  4. Article: Stalking Arizona dust devils helps scientists understand electrical, atmospheric effects of dust storms on Mars par l'Université de Californie à Berkeley
  5. (en)Michael E. Umscheid, J.P. Monteverdi et J.M. Davies, « Photographs and Analysis of an Unusually Large and Long-lived Firewhirl », Electronic Journal of Severe Storms Meteorology, vol. 1, no 2,‎ 2006 (lire en ligne)
  6. (en) Thomas P. Grazulis, Significant Tornadoes 1680–1991: A Chronology and Analysis of Events, St. Johnsbury, (Vermont), The Tornado Project of Environmental Films,‎ juillet 1993 (ISBN 1879362031)
  7. (en)Christopher R. Church, John T. Snow et Jean Dessens, « Intense Atmospheric Vortices Associated with a 1000 MW Fire », Bulletin of the American Meteorological Society, vol. 61, no 7,‎ juillet 1980, p. 682–694 (DOI <0682:IAVAWA>2.0.CO;2 10.1175/1520-0477(1980)061<0682:IAVAWA>2.0.CO;2, résumé)
  8. (en) Francine Battaglia, Kevin B. McGrattan, Ronald G. Rehm et Howard R. Baum, « Fire Whirl simulations », Annual Conference on Fire Research, National Institute of Standards and Technology,‎ octobre 1998 (résumé, consulté le 21 juillet 2008)[PDF]
  9. (en) James G. Quintiere, Principles of Fire Behavior, Thomson Delmar Learning,‎ 1998 (ISBN 0827377320)
  10. (en)J. E. Hissong, « Whirlwinds At Oil-Tank Fire, San Luis Obispo, Calif. », Monthly Weather Review, American Meteorological Society, vol. 54, no 4,‎ avril 1926, p. 161–3 (DOI <161:WAOFSL>2.0.CO;2 10.1175/1520-0493(1926)54<161:WAOFSL>2.0.CO;2, résumé)
  11. a et b Maxi Sciences, « Tornade de feu : un phénomène rare survenu au Brésil (avec vidéo) », Le Post,‎ 26 août 2010 (consulté le 26 août 2010)
  12. (en) Metzger S. M., Article: Dust Devil Vortices at the Ares Vallis MPF Landing Site par la NASA (PDF)
  13. (en) Article: Martian Dust Devils Caught par l'université de la Rhur à Bochum

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Sur les autres projets Wikimedia :