Topologie induite

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est l'ensemble des traces sur Y des ouverts de X, autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : { OY | O ouvert de X }. On dit alors que Y est un sous-espace de X.

La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.

Remarques[modifier | modifier le code]

  • Si un ouvert O de X est inclus dans Y, alors O est un ouvert de Y pour la topologie induite (de même, tout fermé de X inclus dans Y est fermé dans Y).
  • Nuvola apps important.svg Un ouvert de Y pour la topologie induite n'est pas forcément ouvert pour la topologie de X. De même, un fermé de Y n'est pas toujours fermé dans X. Par exemple, si X=ℝ muni de sa topologie usuelle et Y=]-1,1] alors ]0,1]=]0,2[⋂]-1,1] est ouvert dans Y mais pas dans X et ]-1,0]=[-2,0]⋂]-1,1] est fermé dans Y mais pas dans X.
  • Cependant, si Y est ouvert dans X, tout ouvert de Y est un ouvert de X : cela découle du fait que l'intersection de deux ouverts est ouverte. (De même, si Y est fermé dans X, tout fermé de Y est un fermé de X.)
  • La topologie induite est un cas particulier de topologie initiale.