Topologie grossière

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X.

Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble. Intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.

Propriétés[modifier | modifier le code]

La topologie grossière est la topologie possédant le moins d'ouverts qu'il soit possible de définir sur un ensemble X, la définition d'une topologie supposant précisément que X et l'ensemble vide font partie de ces ouverts.

Parmi les autres propriétés d'un tel espace topologique X :

Voir aussi[modifier | modifier le code]

Topologie discrète