Théorie des groupes

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La théorie des groupes est une discipline mathématique. C'est la partie de l'algèbre générale qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie.

Histoire[modifier | modifier le code]

L'une des origines de l'idée de groupe est l'étude des équations algébriques par Joseph-Louis Lagrange (1771). La terminologie de « groupe » est mise en évidence pour la première fois par Évariste Galois (1830) : on peut « grouper » les automorphismes du corps de décomposition d'un polynôme séparable. L'idée de groupe tient aussi ses sources de l'étude de nouvelles géométries, Felix Klein (1872), et de la théorie des nombres : Leonhard Euler, Carl Friedrich Gauss.

Applications[modifier | modifier le code]

La théorie des groupes est très utilisée en chimie. Elle sert par exemple à simplifier l'écriture de l'hamiltonien d'une molécule en exploitant ses symétries. Elle permet de calculer les orbitales moléculaires comme somme d'orbitales atomiques et de prédire le type de déformation que va subir une molécule en spectroscopie infrarouge (IR). En spectroscopie, elle permet de savoir si une transition sera visible dans un spectre infrarouge et/ou dans un spectre Raman, selon la symétrie de sa déformation.

Chaque molécule possède une symétrie qui peut être déterminée à l'aide du synoptique dans la boîte déroulante ci-dessous. Une fois le groupe ponctuel de symétrie trouvé, on utilise la table de caractères correspondante[1].

Dans les structures élémentaires de la parenté l’ethnologue Claude Lévi-Strauss, aidé du mathématicien André Weil, dégage le concept de structure élémentaire de parenté en utilisant la notion de groupe (en particulier le groupe de Klein)[2].

La théorie des groupes est aussi très utilisée en physique théorique, notamment pour le développement des théories de jauge.

Les groupes donnent lieu à des tables de représentation irréductibles. Par exemple, pour l'eau, les symétries se combinent selon:

Table C_{2v}
C_{2v} E C_{2} \sigma_{v}(xz) \sigma'_{v}(yz)
E E C_{2} \sigma_{v} \sigma'_{v}
C_{2} C_{2} E \sigma'_{v} \sigma_{v}
\sigma_{v} \sigma_{v} \sigma'_{v} E C_{2}
\sigma'_{v} \sigma'_{v} \sigma_{v} C_{2} E

Chaque mode de vibration moléculaire peut être ramené à une combinaison des représentations irréductibles dont les caractéristiques permettent ensuite d'établir s'ils relèvent de la spectroscopie Raman ou infrarouge.

Notes et références[modifier | modifier le code]

  1. Tables de caractères des principaux groupes ponctuels de symétrie sur scienceamusante.net
  2. Paul Jolissaint Notes de lecture : Groupes et ethnologie

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

(en) Derek J. S. Robinson (de), A Course in the Theory of Groups, Springer, coll. « GTM » (no 80),‎ 1996 (ISBN 978-0-387-94461-6, lire en ligne)