Système invariant

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Un processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps.

Définition[modifier | modifier le code]

Si au signal d'entrée \displaystyle x(t), un système invariant associe une sortie \displaystyle y(t), alors quel que soit le décalage temporel \displaystyle \delta appliqué à l'entrée, le système associe au signal \tilde x(t) = x(t + \delta) la sortie décalée \tilde y(t) = y(t + \delta).


Définition équivalente :

Un système est invariant s’il y a commutativité entre le bloc du système et un bloc délai arbitraire.


Cette propriété peut être satisfaite (mais pas nécessairement) si la fonction de transfert du système n'est pas une fonction du temps (hormis dans les expressions de l'entrée et de la sortie).

Exemples[modifier | modifier le code]

Exemples basiques[modifier | modifier le code]

Pour savoir comment déterminer si un système est invariant, considérons les deux systèmes :

  • Système A: y(t) = t\, x(t)
  • Système B: \,\!y(t) = 10 x(t)

Comme le système A dépend explicitement du temps t en dehors de x(t)\, et y(t)\,, alors le système n'est pas invariant. Le système B, lui, ne dépend pas explicitement du temps t et est donc invariant.

Exemples formels[modifier | modifier le code]

Une preuve plus formelle de l'invariance (ou non) des systèmes A et B ci-dessus est présentée ici. Pour effectuer cette preuve, la seconde définition va être utilisée.

Système A :

À partir de l'entrée avec un décalage x_d(t) = \,\!x(t + \delta)
y(t) = t\, x_d(t)
y_1(t) = t\, x_d(t) = t\, x(t + \delta)
Maintenant retardons la sortie par \delta
y(t) = t\, x_d(t)
y_2(t) = \,\!y(t + \delta) = (t + \delta) x(t + \delta)
Clairement y_1(t) \,\!\ne y_2(t), c'est pourquoi le système n'est pas invariant.

Système B :

À partir de l'entrée avec un décalage x_d(t) = \,\!x(t + \delta)
y(t) = 10 \, x_d(t)
y_1(t) = 10 \,x_d(t) = 10 \,x(t + \delta)
Maintenant retardons la sortie par \,\!\delta
y(t) = 10 \,x_d(t)
y_2(t) = y(t + \delta) = 10 \,x(t + \delta)
Clairement y_1(t) = \,\!y_2(t), c'est pourquoi le système est invariant

Exemple abstrait[modifier | modifier le code]

Notons l'opérateur retard par \mathbb{T}_rr est la quantité par laquelle le paramètre vectoriel doit être retardé. Par exemple, le système "avance de 1" :

x(t+1) = \,\!\delta(t+1) * x(t)

peut être représenté par la notation abstraite :

\tilde{x}_1 = \mathbb{T}_1 \, \tilde{x}

\tilde{x} est la fonction donnée par

\tilde{x} = x(t) \, \forall \, t \in \mathbb{R}

le système produisant la sortie décalée

\tilde{x}_1 = x(t + 1) \, \forall \, t \in \mathbb{R}

Donc \mathbb{T}_1 est un opérateur qui avance l'entrée vectorielle de 1.

Supposons que nous représentions le système par un opérateur \mathbb{H}. Ce système est invariant s'il commute avec l'opérateur retard, c’est-à-dire :

\mathbb{T}_r \, \mathbb{H} = \mathbb{H} \, \mathbb{T}_r  \,\, \forall \, r

Si l'équation du système est donnée par :

\tilde{y} = \mathbb{H} \, \tilde{x}

Alors c'est un système invariant si on peut appliquer l'opérateur \mathbb{H} sur \tilde{x} suivi de l'opérateur retard \mathbb{T}_r, ou appliquer l'opérateur retard \mathbb{T}_r suivi de l'opérateur du système \mathbb{H}, les 2 calculs produisant un résultat équivalent.

Appliquons l'opérateur du système en premier :

\mathbb{T}_r \, \mathbb{H} \, \tilde{x} = \mathbb{T}_r \, \tilde{y} = \tilde{y}_r

Appliquer l'opérateur retard en premier donne:

\mathbb{H} \, \mathbb{T}_r \, \tilde{x} = \mathbb{H} \, \tilde{x}_r

Si le système est invariant, alors

\mathbb{H} \, \tilde{x}_r = \tilde{y}_r

Articles connexes[modifier | modifier le code]