Robert Griess

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Robert Louis Griess, Jr., né le 10 octobre 1945 à Savannah en Géorgie, est un mathématicien américain spécialiste des groupes finis, connu pour sa construction du groupe Monstre, le plus grand groupe sporadique.

Robert Griess à Oberwolfach en 2005

Biographie[modifier | modifier le code]

Griess a été écolier à Pittsburgh puis étudiant de l'université de Chicago, passant en 1967 un B. A., en 1968 une maîtrise et en 1971 un Ph. D., dirigé par John Griggs Thompson[1]. Il a enseigné à l'université du Michigan, à partir de 1971 comme « instructeur Hildebrandt (en) », 1973 professeur assistant, 1976 professeur associé et depuis 1981 professeur titulaire. En 1979-80, 1981 et 1994, il était à l'Institute for Advanced Study. Il a aussi été professeur invité à l'université Yale, l'université Rutgers, l'université de Californie à Santa Cruz, à l'ENS (maître de recherches au CNRS en 1986-1987), à l'université de Zhejiang et à l'université nationale Cheng Kung.

En 1981-1982, il a été boursier Guggenheim. Il est membre de l'Académie américaine des arts et des sciences. Il a été orateur invité au Congrès international des mathématiciens de 1983 à Varsovie (The sporadic simple groups and construction of the Monster).

En 2010, il a reçu le prix Leroy P. Steele pour une « contribution majeure dans la recherche »[2]. En 2012, il a été élu membre de la Société mathématique américaine[3].

Œuvre[modifier | modifier le code]

Griess a construit le « groupe Monstre » (qu'il appelle aussi le Friendly Giant : le Géant amical), le plus grand des groupes finis simples sporadiques, en représentant une algèbre de matrices, appelée l'algèbre de Griess (en), sur un -espace vectoriel de dimension 196 883. L'existence de ce groupe avait été conjecturée en 1973 par Griess[4] et, indépendamment, par Bernd Fischer, mais ce n'est qu'à sa construction explicite[5] qu'on eut la preuve de son existence. Dans le cadre de cette construction, vingt des groupes sporadiques découverts auparavant apparaissaient, si bien qu'elle peut aussi être considérée comme une « théorie unifiée » des groupes sporadiques. Elle laisse invariante une structure produit et utilise le réseau de Leech. Fin 1979, quand Griess effectuait ses recherches, la possibilité de construire une telle représentation n'était nullement garantie, vu l'ordre élevé du Monstre. Griess a ensuite participé à la classification des sous-groupes finis des groupes de Lie exceptionnels et a étudié les algèbres d'opérateurs vertex (en).

Sélection de publications[modifier | modifier le code]

Notes et références[modifier | modifier le code]

(de) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en allemand intitulé « Robert Griess » (voir la liste des auteurs)

  1. (en) Robert L. Griess, Jr. sur le site du Mathematics Genealogy Project
  2. « 2010 Steele Prizes », Notices AMS, vol. 57, no 4,‎ avril 2010, p. 510-514 (lire en ligne)
  3. (en) List of Fellows of the AMS
  4. Annonce à la Conference on Finite Groups, Park City, Utah 1975
  5. Annoncée par Griess dans un mail du 14 janvier 1980

Voir aussi[modifier | modifier le code]

Article connexe[modifier | modifier le code]

Liens externes[modifier | modifier le code]