Relations de Maxwell

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Ne doit pas être confondu avec Équations de Maxwell.

En thermodynamique, on appelle relations de Maxwell l'ensemble des équations aux dérivées partielles obtenues grâce aux définitions des potentiels thermodynamiques et à l'égalité de Schwarz. Pour un système entièrement décrit par les variables pression, température, entropie et volume, on retient généralement un ensemble de quatre relations relatives à l'énergie interne, à l'enthalpie, à l'énergie libre et à l'enthalpie libre. Néanmoins les relations de Maxwell sont généralisables à tous les systèmes thermodynamiques notamment chimiques, électriques et électrochimiques.

Définition générale[modifier | modifier le code]

Soit un potentiel thermodynamique \Phi dont les variables naturelles sont les variables conjuguées x_i et y_i. L'application du théorème de Schwartz permet d'obtenir :


\left(\frac{\partial}{\partial x_j}
\left(\frac{\partial \Phi}{\partial y_k}
\right)_{\{y_{i\ne k}\}}
\right)_{\{x_{i\ne j}\}}
=
\left(\frac{\partial}{\partial y_k}
\left(\frac{\partial \Phi}{\partial x_j}
\right)_{\{x_{i\ne j}\}}
\right)_{\{y_{i\ne k}\}}

Systèmes p, T, V, S[modifier | modifier le code]

Pour les systèmes définis par les quatre variables pression, température, volume et entropie, on définit par l'intermédiaire de différentielles totales exactes quatre potentiels thermodynamiques :

 \mathrm{d}F = -p\,\mathrm{d}V - S\,\mathrm{d}T ~
 \mathrm{d}G = V\,\mathrm{d}p - S\,\mathrm{d}T ~
 \mathrm{d}U = -p\,\mathrm{d}V + T\,\mathrm{d}S ~
 \mathrm{d}H = V\,\mathrm{d}p + T\,\mathrm{d}S ~

Les relations de Maxwell qu'on en tire permettent notamment de définir thermodynamiquement la température, la pression, l'entropie et le volume.

 \left(\frac{\partial U}{\partial V}\right)_S =\left(\frac{\partial F}{\partial V}\right)_T =   - p ~
 \left(\frac{\partial H}{\partial p}\right)_S =\left(\frac{\partial G}{\partial p}\right)_T = V ~
 \left(\frac{\partial F}{\partial T}\right)_V =\left(\frac{\partial G}{\partial T}\right)_p = - S ~
 \left(\frac{\partial U}{\partial S}\right)_V =\left(\frac{\partial H}{\partial S}\right)_p = T ~


on trouve aussi :

 \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T ~
 \left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T ~
 \left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V ~
 \left(\frac{\partial T}{\partial p}\right)_S = \left(\frac{\partial V}{\partial S}\right)_p ~

On peut retrouver l'ensemble de ces relations grâce au carré thermodynamique de Born.

Une application : première loi de Joule[modifier | modifier le code]

Pour un gaz parfait, on a donc d'après ce qui précède

\left(\frac{\partial\,S}{\partial\,V}\right)_T=\left(\frac{\partial\,p}{\partial\,T}\right)_V=\frac{n\,R}{V}=\frac{p}{T}.

D'autre part,

 \mathrm{d}S=\frac{\mathrm{d}U}{T} + \frac{p}{T} \mathrm{d}V.

Soit:

 \mathrm{d}S= \frac{1}{T}\left(\frac{\partial\,U}{\partial\,T}\right)_{V}\,\mathrm{d}T+\left(\frac{1}{T}\,\left(\frac{\partial\,U}{\partial\,V}\right)_{T}+\frac{p}{T}\right)\,\mathrm{d}V.

Ainsi,

\left(\frac{\partial\,S}{\partial\,V}\right)_{T}=\frac{1}{T}\left(\frac{\partial\,U}{\partial\,V}\right)_{T}+\frac{p}{T}

d'où, d'après ce qui précède,

\left(\frac{\partial\,U}{\partial\,V}\right)_{T}=0 :

l'énergie interne d'un gaz parfait ne dépend que de sa température.

En effectuant ces calculs pour un gaz de van der Waals, c'est-à-dire un gaz dont l'équation d'état est

\left(p+a\,\frac{n^{2}}{V^{2}}\right)\left(V-nb\right)=nRT,

on trouve

\left(\frac{\partial\,U}{\partial\,V}\right)_{T}=a\,\frac{n^{2}}{V^{2}}.

Cette méthode ne permet pas d'expliciter la dépendance de U en T : en effet, on sait par ailleurs qu'elle fait intervenir le coefficient de Laplace \gamma qui n'apparaît ni dans les identités thermodynamiques ni dans l'équation d'état.

Notations utilisées dans cet article[modifier | modifier le code]