Relation d'équivalence

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En théorie des ensembles, la notion de relation d'équivalence sur un ensemble permet de mettre en relation des éléments qui sont similaires par une certaine propriété.

On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient.

Définition[modifier | modifier le code]

Définition formelle[modifier | modifier le code]

Une relation d'équivalence \mathcal R\, dans un ensemble E est une relation binaire qui est à la fois réflexive, symétrique et transitive.

  • C'est une relation binaire : c'est donc une somme disjointe (E, E, G_{\mathcal R}), où G_{\mathcal R} , le graphe de \mathcal R\, , est une partie de E^2 caractérisant la relation. En pratique, sauf ambiguïté sur l'ensemble dans lequel la relation est placée, on peut confondre celle-ci avec son graphe. Si x et y sont deux éléments de E, on dit que « y est image de x par \mathcal R\, » ou que « y est associé à x par \mathcal R\, » ou que « y correspond à x par \mathcal R\, » si le couple (x,y) appartient à G_{\mathcal R} ; on note cela « x\mathcal R\,y » .
  • \mathcal R\, est réflexive : tout élément de E est associé à lui-même :    \forall\ x \in E , x \mathcal R x \,
  • \mathcal R\, est symétrique : tout élément de E est image de ses images :
 \forall\ ( x , y ) \in E^{\, 2} , ( x \mathcal R y ) \Rightarrow ( y \mathcal R x ) \,
  • \mathcal R\, est transitive : toute image d'une image d'un élément de E est directement image de cet élément :
 \forall\ ( x , y , z ) \in E^{\, 3} , ( x \mathcal R y \wedge y \mathcal R z ) \Rightarrow ( x \mathcal R z ) \,

Définition équivalente[modifier | modifier le code]

On peut aussi définir une relation d'équivalence comme une relation binaire réflexive et circulaire.

Une relation binaire est dite circulaire si toute image d'une image d'un élément de E est antécédent de cet élément, c'est-à-dire si :

 \forall\ ( x , y , z ) \in E^{\, 3} , ( x \mathcal R y \wedge y \mathcal R z ) \Rightarrow ( z \mathcal R x )~.

Classe d'équivalence[modifier | modifier le code]

Considérons un ensemble non vide E muni d'une relation d'équivalence \mathcal R\,. La classe d'équivalence d'un élément x de E , notée « \mathcal R( x ) », est alors l'ensemble des images de x par \mathcal R\, :

 \mathcal R ( x ) = \{ y \in E \,|\ x \mathcal R y \} \, .
  • Si y \in \mathcal R ( x ) alors y est appelé un représentant de \mathcal R ( x ).
  • On appelle système de représentants une partie A de E telle pour tout y \in E, il existe x \in A tel que x \mathcal R y.
  • \mathcal R( x ) n'est jamais vide, car elle contient toujours au moins x lui-même ( \mathcal R\, est réflexive ).
  • Inversement, tout élément de E appartient à au moins une classe d'équivalence : la sienne ( x \in \mathcal R ( x ) ).
  • \mathcal R( y ) = \mathcal R( x ) \Leftrightarrow y \in \mathcal R( x ).
  • Inversement, si y est un élément de E n'appartenant pas à \mathcal R( x ) , alors l'intersection de \mathcal R( x ) et de \mathcal R( y ) est vide.

On déduit de ce qui précède que l'ensemble des classes d'équivalence de E forme une partition de E. Inversement, toute partition d'un ensemble y définit une relation d'équivalence. Ceci établit une bijection naturelle entre les partitions d'un ensemble et les relations d'équivalence sur cet ensemble. Le nombre de relations d'équivalence sur un ensemble à n éléments est donc égal au nombre de Bell Bn, qui peut se calculer par récurrence.

Enfin, la restriction d'une relation d'équivalence à l'une de ses classes d'équivalence est une relation pleine.

Ensemble quotient[modifier | modifier le code]

C'est l'ensemble des classes d'équivalence de E suivant \mathcal R.

Définition[modifier | modifier le code]

L'ensemble quotient de E par la relation d'équivalence \mathcal R , noté «  E / \mathcal R » , est l'ensemble des classes d'équivalence de E suivant \mathcal R :

 E / \mathcal R = \{ \mathcal R ( x ) \,|\ x \in E \} \,

L'ensemble quotient est donc un nouvel ensemble construit à partir de E et de \mathcal R. C'est un sous-ensemble de \mathfrak P ( E ) , ensemble des parties de E.

Remarque : on peut munir une classe propre d'une relation d'équivalence. On peut même y définir des classes d'équivalence, mais comme elles peuvent être elles-mêmes des classes propres, cela interdit l'existence d'un ensemble quotient dans ce cas. Par exemple, si l'on considère la relation d'équipotence dans la classe des ensembles, cette relation est une relation d'équivalence, et on peut y définir des classes d'équivalence dites « classes d'équipotence » :

  • la classe d'équipotence de l'ensemble vide est ainsi le singleton formé par l'ensemble vide, puisqu'il ne peut être mis en bijection qu'avec lui-même ;
  • les singletons forment une autre classe d'équipotence ; mais il s'agit d'une classe propre, ce qui interdit de former un ensemble (ou une classe) à partir des classes d'équipotence (et, accessoirement, d'identifier les classes d'équipotence aux cardinaux).

L'ensemble quotient peut aussi être désigné comme « l'ensemble E quotienté par \mathcal R » ou « l'ensemble E considéré modulo \mathcal R ». L'idée derrière ces appellations est de travailler dans l'ensemble quotient comme dans E, mais sans distinguer entre eux les éléments équivalents selon {\mathcal R}.

Exemple[modifier | modifier le code]

L'ensemble des entiers relatifs peut être muni de la relation « a le même signe que » (comprise au sens strict). Il y a trois classes d'équivalence :

  1. l'ensemble \mathbb Z_+^* des entiers strictement positifs,
  2. l'ensemble \mathbb Z_-^* des entiers strictement négatifs,
  3. le singleton {0}.

On peut noter ces trois classes par, respectivement, (+), (-) et (0).

On connaît la « règle des signes » pour le produit de deux entiers relatifs : elle montre que si on sait dans quelle classe d'équivalence se trouvent x et y, le produit xy se trouve dans une classe bien déterminée. Par exemple, si x est dans (+) et y dans (0), alors xy est dans (0). Formellement, on peut le noter (+)·(0)=(0). De même (+)·(-)=(-), ou encore (+)·(+)=(+), (-)·(-)=(+) etc. Ceci est un exemple simple de loi-quotient.

Mais avec cet exemple on ne peut pas « faire passer au quotient » la loi + : que dire de la somme d'un élément de (+) et d'un élément de (-) ? Pour savoir si les lois et les propriétés de structure sont compatibles avec le passage au quotient, il est utile d'introduire le concept de surjection canonique.

Surjection canonique[modifier | modifier le code]

Il existe une surjection canonique s de E dans l'ensemble quotient, qui à chaque élément de E associe sa classe d'équivalence :

s   :   E \longrightarrow E / \mathcal R \,
 x \longmapsto \ A = \mathcal R ( x ) \,

s est une application puisque tout élément de E appartient à une et une seule classe d'équivalence; s est surjective puisqu'aucune classe d'équivalence n'est vide.

s n'est pas en général injective, mais on a :

 \forall x \in E , \forall y \in E , \, [ s ( x ) = s ( y ) ] \Leftrightarrow [ \mathcal R ( x ) = \mathcal R ( y ) ] \Leftrightarrow [ x \mathcal R y ] \,

Cette surjection est ainsi une bijection si et seulement si la relation d'équivalence concernée n'est autre que la relation d'égalité.

Structure quotient[modifier | modifier le code]

Grâce à la surjection s , si E est muni d'une structure algébrique, il est possible de transférer cette dernière à l'ensemble quotient, sous réserve que la structure soit compatible avec la relation d'équivalence, c'est-à-dire que deux éléments de E se comportent de la même manière vis-à-vis de la structure s'ils appartiennent à la même classe d'équivalence. L'ensemble quotient est alors muni de la structure quotient de la structure initiale par la relation d'équivalence.

Par exemple, si E est muni d'une structure de groupe, il est possible, dans certains cas, de parler du groupe quotient  E / \mathcal R.

Exemples[modifier | modifier le code]

  • L'égalité, sur un ensemble quelconque, est une relation d'équivalence.
  • Le parallélisme sur un ensemble de droites (dans un plan) est une relation d'équivalence.
  • Si f \, est une application d'un ensemble E dans un ensemble F, alors la relation \mathcal R définie par :
 \forall\ ( x , y ) \in E^{\, 2} , [ x \mathcal R y ] \Leftrightarrow [ f( x) = f( y) ] \,
est une relation d'équivalence sur E. Ainsi toute application induit une relation d'équivalence sur son ensemble de départ.
f \, est une injection ssi la relation induite dans l'ensemble de départ est la relation d'égalité. Nous avons alors :
 \forall\ ( x , y ) \in E^{\, 2} , [ f( x) = f( y) ] \Leftrightarrow [ x = y ] \,
  • Si G est un groupe et H un sous-groupe de G alors la relation R sur G définie par (x R yy−1xH) est une relation d'équivalence, dont les classes sont appelées les classes à gauche suivant H.
  • Le fait d'être égales presque partout pour des fonctions sur un espace mesuré est une relation d'équivalence qui joue un rôle important dans la théorie de l'intégration de Lebesgue. En effet deux fonctions égales presque partout ont le même comportement dans cette théorie.
  • La relation d'un modèle de Kripke de la logique modale S5 est une relation d'équivalence. En particulier, si l'on modélise la connaissance avec la logique modale S5, la relation épistémique d'un agent est une relation d'équivalence.
Contre-exemples

Plusieurs relations exhibent la réflexivité, la symétrie ou la transitivité, mais pas toutes :

  • Réflexive et transitive :  \forall\ ( x , y ) \in \mathbb N^{\, 2} , [ x \mathcal R y ] \Leftrightarrow [ x \leq y ] \,
  • Symétrique et transitive :  \forall\ ( x , y ) \in \mathbb N^{\, 2} , [ x \mathcal R y ] \Leftrightarrow [ x y \neq 0 ] \,
  • Réflexive et symétrique :  \forall\ ( x , y ) \in \mathbb Z^{\, 2} , [ x \mathcal R y ] \Leftrightarrow [ (2 \mid (x - y)) \vee (3 \mid (x - y)) ] \, (« x-y est divisible par 2 ou par 3 »)

Relation d'équivalence engendrée[modifier | modifier le code]

Sur un ensemble E, soit R une relation binaire, identifiée à son graphe. La plus petite des relations d'équivalence sur E qui contiennent R est leur intersection. C'est aussi la fermeture transitive de RR−1ΔE. On l'appelle la relation d'équivalence (sur E) engendrée par R.

Voir aussi[modifier | modifier le code]