Refroidissement à eau

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le refroidissement à eau (« Watercooling » en anglais) est une branche du refroidissement liquide ayant pour particularité d’utiliser l’eau comme liquide caloporteur.C’est un système de refroidissement largement répandu dans l’industrie automobile et la production d’énergie. Plus récemment, le refroidissement à eau a fait son apparition dans le secteur de la micro-informatique pour pallier les inconvénients du refroidissement à air.

Présentation du procédé[modifier | modifier le code]

Utilisation d'un système de refroidissement à cycle ouvert lors d'une expérience de chimie.

On retrouve ce procédé sous deux architectures différentes:

  • Les systèmes dits à “cycle ouvert” (once-through cooling ou OTC en anglais) utilisés pour des installations temporaires ou lorsque de grandes quantités d’eau sont disponibles.
  • Les systèmes à recirculation sont les plus fréquemment utilisés. Dans cette configuration, la même eau est utilisée en cycle fermé et doit donc être refroidie.

Les éléments d'un circuit de refroidissement à eau[modifier | modifier le code]

Un système classique de refroidissement à eau à recirculation est composé des éléments suivants.

Le premier échangeur thermique[modifier | modifier le code]

Ce premier échangeur thermique, aussi appelé "Waterblock" dans le domaine informatique, permet l'échange de chaleur entre l'élément à refroidir et le liquide caloporteur. Sur certains systèmes comme les moteurs à  explosion, le carter comporte de multiples canaux et fait office d'échangeur.

Le second échangeur thermique[modifier | modifier le code]

Ce deuxième échangeur thermique aussi appelé radiateur ou dissipateur permet l'évacuation de la chaleur du circuit dans l’air ambiant par exemple. Cet échangeur peut être passif ou actif (on accélère le refroidissement mécaniquement à l’aide de ventilateurs ou de systèmes de réfrigération).

Le réservoir[modifier | modifier le code]

Il permet de stocker l’eau, d’absorber les fluctuations de volume dues aux variations de température, de pallier les fuites et l'évaporation résiduelle du circuit et occasionnellement à attraper les bulles qui pourraient se former dans le circuit. À noter que le réservoir est généralement doté d’un bouchon permettant la purge ou le remplissage du système.

La pompe[modifier | modifier le code]

Elle assure une bonne circulation du liquide dans le circuit. Il est important de souligner que les premiers systèmes de refroidissement à eau, notamment dans le secteur automobile, ne disposaient pas de pompe et que la circulation du fluide était assurée par le phénomène de thermosiphon.

Le liquide caloporteur[modifier | modifier le code]

Ici c'est l'eau qui utilisée comme liquide caloporteur, servant littéralement à “transporter la chaleur” entre les deux échangeurs thermiques. Rappelons que l’inertie thermique du système croit avec la quantité d’eau utilisée. Autrement dit, un système doté d’un grand réservoir ou de longues tuyauteries aura une inertie thermique plus importante. Notons également qu’en pratique, des additifs sont généralement ajoutés a l’eau. Ils ont pour but d’abaisser la température de solidification (gel) ou d'éviter la formation d’algues par exemple.

Le fluide transite à travers les éléments du circuit via un réseau de tuyauteries. Selon la nature et le nombre d'éléments à refroidir, on peut adopter un montage en série ou en parallèle.

Avantages[modifier | modifier le code]

La principale alternative à un système de refroidissement à eau est l’utilisation d’un refroidissement à air. L’utilisation de l’eau présente cependant l’avantage d’avoir une bien meilleure conductivité thermique que l’air et est un bien meilleur caloporteur. Concrètement, cela permet de refroidir un même système plus efficacement avec une surface d'échange équivalente tout en ayant un débit et un déplacement de fluide moindre.

Ce procédé présente également la possibilité de déporter le système de refroidissement loin de la source de chaleur, lorsque celle-ci se dégage dans un espace restreint ou inadapté par exemple. C’est pourquoi cette configuration s'avère particulièrement avantageuse lors du refroidissement de composants informatiques.

Plus généralement, l’eau présente l’avantage d'être non toxique, fluide et relativement peu chère.

On peut également lui trouver des avantages lors d’utilisations plus spécifiques, par exemple, l’eau de refroidissement qui enveloppe un moteur à explosion apporte une isolation sonore supplémentaire.

Inconvénients[modifier | modifier le code]

Un système de refroidissement à eau est généralement plus complexe à mettre en oeuvre qu’un système de refroidissement à air, surtout pour de petites installations. De plus, la proximité du liquide avec les éléments à refroidir impose dans la majorité des cas une excellente étanchéité du système.

Un second problème apparaît lors de l'utilisation de métaux différents au sein d’un même circuit. Il s’agit de l'oxydoréduction. Si ce phénomène n'est pas contrôlé, il peut mener à long terme à l'apparition de fuites généralisées, une obstruction du système, des détériorations au niveau de la pompe, voire une destruction des pièces métalliques.

Il est donc primordial de considérer ce phénomène dès la conception du système. Les solutions classiques consistent en l’utilisation du même métal au sein de toute l'installation ou au remplissage du système avec un liquide caloporteur empêchant ce phénomène. L’eau déminéralisée possède par exemple un fort pouvoir isolant permettant de réduire les risques d'oxydoréduction et de minimiser les dégâts en cas de fuite.

Performances[modifier | modifier le code]

Animation illustrant la formation d'une sous-couche laminaire.

La puissance dissipée en watt par un tel système peut être calculée grâce à la loi de refroidissement de Newton.


Q=h\times A\times (T_s - T_f)

  • Q est la puissance dissipée en watt par le système ;
  • h est le coefficient de transfert convectif en W/m².K ;
  • A est la surface d'échange disponible ;
  • T_s - T_f est la différence de température entre le fluide et la surface.

Un des phénomènes pouvant diminuer les performances du système est l'apparition d'un écoulement laminaire. Ce phénomène est dépendant de la viscosité du fluide utilisé, de la géométrie des canaux et de la vitesse de déplacement du fluide.

En opposition à un écoulement turbulent, un écoulement laminaire désigne un déplacement du fluide uniforme ou toutes particules ont la même vitesse et sont immobiles les unes par rapport aux autres.Par exemple, un fluide plutôt visqueux transitant dans une tuyauterie droite sans variation de diamètre avec un débit relativement faible aura un écoulement laminaire.

Dans le cas d’un système de refroidissement, le problème posé est celui de la perte de vitesse par friction des particules proches des parois du conduit. Il faut absolument éviter la création de cette « sous-couche laminaire » au sein des échangeurs thermiques car la couche de fluide se déplaçant a faible vitesse contre les parois agira comme un isolant thermique empêchant les échanges de chaleur avec la portion du fluide se déplaçant à grande vitesse au centre du conduit.

Les solutions permettant de briser cette couche laminaire sont généralement une bonne vitesse de déplacement du fluide dans le circuit et le placement d’obstacles sur le passage du fluide au sein des échangeurs, le but étant d'obtenir un écoulement turbulent. Cela explique pourquoi la majorité des échangeurs du commerce possèdent des canaux de forme relativement complexe et sont munis d'une pompe.

Domaines d’application[modifier | modifier le code]

Automobile[modifier | modifier le code]

Micro-informatique[modifier | modifier le code]

Apparition[modifier | modifier le code]

Vue de coté d'un module du Cray-2.

Rappelons tout d’abord que les circuits intégrés qui composent un ordinateur, le processeur (CPU  : Central process Unit) et le processeur graphique (GPU  : Graphical Process Unit) notamment, sont des composants résistifs. En d’autres termes, l'énergie qu’ils consomment est intégralement restituée sous forme de chaleur. Ce qui explique la nécessité de refroidir ces composants.

La première utilisation connue du refroidissement à eau dans un ordinateur est celle de Cray-2, un super-ordinateur livré par la société Cray en 1985.

Lors de la conception de cette machine destinée à effectuer d’imposants calculs, les ingénieurs ont été confrontés au problème de la densité des composants. En effet, afin d’obtenir les performances visées, le système devait posséder une importante densité de circuits intégrés dans un espace restreint. La première solution trouvée consistait à utiliser de grands circuits imprimés sur lesquels étaient brasés les circuits intégrés en grande quantité. Cela rendait le réalisation de ces cartes très complexe et ne permettait pourtant pas d’atteindre les objectifs visés.

La solution innovante imaginée par Seymour Cray lui-même consistait en la réalisation de petites cartes connectées les unes aux autres. De fait, la densité de composants était considérablement augmentée mais cela posait un nouveau problème: avec cette densité de composants, il n’y avait aucune chance pour que les systèmes de refroidissement à air conventionnels fournissent des résultats satisfaisants.

C’est pourquoi les circuits du Cray-2 furent tout simplement immergées dans le fluorinert, un liquide de refroidissement spécialement conçu pour l’informatique par la société 3M présentant un fort pouvoir isolant. Un module annexe à la machine était chargé de faire circuler et de refroidir le liquide.

Évolution[modifier | modifier le code]

Vue de détail du refroidissement à eau d'un ordinateur personnel utilisant des composants du commerce.

À partir des années 1990 on a vu apparaître le refroidissement liquide dans les ordinateurs personnels traditionnellement équipés de refroidissements à air (ventirads). Mais les composants de l'époque générant relativement peu de chaleur, son utilisation ne s’est avérée réellement justifiée que quelques années plus tard avec la démocratisation du overclocking.

Les précurseurs du refroidissement à eau utilisaient généralement du matériel de récupération ou adaptaient des systèmes existants à leur installation.

Des pompes d'aquarium étaient d'abord utilisées et les waterblocks étaient de fabrication artisanale. De même, les radiateurs de voiture étaient souvent utilisés, en particulier ceux de la Renault Twingo ou de l'Opel Corsa.

La généralisation des jeux sur ordinateurs et des applications nécessitant d’importantes capacités de calcul ont poussé les constructeurs à fournir des processeurs toujours plus puissants. Ces meilleures performances se traduisent généralement d’un point de vue technologique par une finesse de gravure croissante ainsi qu’une augmentation de la fréquence de fonctionnement et de la tension d’alimentation.

Ce phénomène s’est également propagé aux autres composants de l’ordinateur comme la carte graphique (GPU), la carte mère (northbridge), le disque dur et désormais les SSD (solid state drive). Ces modifications affectent de manière très importante la chaleur dégagée par le composant, d'où la nécessité de systèmes de refroidissement toujours plus performants. C’est pourquoi les configurations refroidies à l’eau connaissent depuis quelques années une popularité croissante.

Un marché s’est rapidement développé autour du “watercooling” et il est désormais possible de se procurer des composants dédiés à cet usage (pompes, waterblocks, radiateurs, tuyauteries et raccords, …). Cet industrialisation des procédés de fabrication a de fait permis d’obtenir des systèmes plus performants avec des prix accessibles au grand public.

De nombreux magasins (principalement sur internet) proposent désormais des gammes complètes de produits aussi bien au détail qu'en kits contenant le nécessaire pour assembler un circuit complet.

Il est cependant important de souligner que la majorité du parc informatique et de la production mondiale reste équipée de refroidissements à air, préférés pour leur simplicité d'utilisation et de mise en place ainsi que leur faible coût. Les configurations refroidies à l'eau sont généralement réservées aux ordinateurs personnels haut de gamme ou "overclockés".

Les utilisateurs de telles configurations recherchent autant le gain de performances qu'une meilleure ergonomie du système de refroidissement ou encore, une meilleure esthétique.

Variantes[modifier | modifier le code]

Le LDPC[modifier | modifier le code]
Le HDPC[modifier | modifier le code]

Mise en oeuvre[modifier | modifier le code]

Entretien[modifier | modifier le code]

Cette section doit être recyclée. Une réorganisation et une clarification du contenu sont nécessaires. Discutez des points à améliorer en page de discussion.

Si les différents éléments ne sont pas constitués du même métal, l'oxydoréduction peut gravement endommager ou boucher le circuit. L'exemple le plus commun, comme dit plus haut, est de mettre des échangeurs en cuivre avec un radiateur en aluminium.Afin de bien nettoyer le système il est préférable de le démonter entièrement et de s'occuper de tous les éléments un par un. Il est recommandé de vidanger le circuit régulièrement (entre six mois et un an).

Le liquide de refroidissement[modifier | modifier le code]

Au fil du temps, la qualité du liquide de refroidissement peut se dégrader. L'usure mécanique arrache des micro-particules aux différents éléments du système. Si l’ensemble de refroidissement à eau contient des éléments fabriqués à la main, ils seront plus sujets à s'abîmer que des éléments industriels. Si on a fabriqué par exemple un réservoir avec des matières plastiques, et utilisé pour l'étanchéité du mastic, il est plus probable que le liquide de refroidissement soit hétérogène.

Les waterblocks[modifier | modifier le code]

Pour déboucher un waterblock, l'utilisation d'un compresseur permet la plupart du temps de déloger les saletés qui s'y seraient incrustées. Si jamais cela s'avérait sans succès, l'emploi de produit chimiques tels que l'acide chlorhydrique ou l'acide sulfurique sont possibles pour décaper les métaux.

Le dissipateur[modifier | modifier le code]

La poussière qui s'accumule au fur et à mesure sur le radiateur augmente progressivement le delta de température entre le processeur et l'air ambiant. Ici aussi le compresseur permet de nettoyer efficacement les ailettes. Si vous n'en possédez pas un simple aspirateur fonctionne également. Pour purger l'intérieur du radiateur, il est conseillé de faire circuler quelques litres de liquide en circuit ouvert. De l'eau suffit (ou de l'eau de Javel pour la prévention des algues), mais pour parfaire le nettoyage, un dernier rinçage avec du liquide de refroidissement peut être effectué.

Le réservoir[modifier | modifier le code]

Les réservoirs fabriqués à la main peuvent être source d'ennuis futurs. Si l'étanchéité d'un circuit n'est pas complète, dans le cas d'un réservoir ne possédant pas une herméticité parfaite, des micro-organismes peuvent apparaître. En effet, la température élevée du liquide dans le système favorise le développement de ces derniers.

Industrie[modifier | modifier le code]

Images[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Références[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]