Produit matriciel

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux »[1].

Produit matriciel ordinaire[modifier | modifier le code]

Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles.

En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).

Si A et B représentent respectivement les applications linéaires ƒ et g, alors A×B représente la composition des applications ƒog.

Cette opération est utilisée notamment en mécanique lors des calculs de torseur statique, ou en informatique pour la matrice d'adjacence d'un graphe.

Le produit de deux matrices ne peut se définir que si le nombre de colonnes de la première matrice est le même que le nombre de lignes de la deuxième matrice, c'est-à-dire lorsqu'elles sont de type compatible.

Si A=(a_{ij}) est une matrice de type (m, n) et B=(b_{ij}) est une matrice de type (n, p), alors leur produit, noté AB=(c_{ij}) est une matrice de type (m, p) donnée par :

\forall i, j : c_{ij} = \sum_{k=1}^n a_{ik}b_{kj} = a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+ a_{in}b_{nj}

La figure suivante montre comment calculer les coefficients c_{12} et c_{33} de la matrice produit AB si A est une matrice de type (4, 2), et B est une matrice de type (2, 3).

Matrix multiplication diagram.svg

{\color{BrickRed}c_{12}} = \sum_{r=1}^2 a_{1r}b_{r2} = a_{11}b_{12}+a_{12}b_{22}

{\color{NavyBlue}c_{33}} = \sum_{r=1}^2 a_{3r}b_{r3} = a_{31}b_{13}+a_{32}b_{23}

Exemples[modifier | modifier le code]


  \begin{pmatrix}
     1 & 0 \\ 
     -1 & 3
  \end{pmatrix}
\times 
  \begin{pmatrix} 
    3 & 1 \\ 
    2 & 1 \\ 
      \end{pmatrix}

=
\begin{pmatrix} 
   (1 \times 3+0 \times 2) & (1 \times 1+0 \times 1) \\
   (-1 \times 3+3 \times 2) & (-1 \times 1+3 \times 1) \end{pmatrix}
= 
\begin{pmatrix} 3 & 1 \\ 3 & 2 \end{pmatrix}

En général, la multiplication des matrices n'est pas commutative, c'est-à-dire que AB n'est pas égal à BA, comme le montre l'exemple suivant.


\begin{pmatrix}
1 & 2 & 0 \\
4 & 3 & -1 \\
\end{pmatrix}

\begin{pmatrix}
5 & 1 \\
2 & 3 \\
3 & 4 \\
\end{pmatrix}

=

\begin{pmatrix}
9 & 7 \\
23 & 9 \\
\end{pmatrix}

          tandis que           

\begin{pmatrix}
5 & 1 \\
2 & 3 \\
3 & 4 \\
\end{pmatrix}

\begin{pmatrix}
1 & 2 & 0 \\
4 & 3 & -1 \\
\end{pmatrix}

=

\begin{pmatrix}
9 & 13 & -1 \\
14 & 13 & -3 \\
19 & 18 & -4 \\
\end{pmatrix}

Multiplication de matrices par bloc[modifier | modifier le code]

Si l'on considère les matrices M = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) et N = \left(\begin{smallmatrix} A' & B' \\ C' & D' \end{smallmatrix}\right), où A,A', B,B', C,C' et D,D' sont des matrices vérifiant :

  • Le nombre de colonnes de A et C est égal au nombre de lignes de A' et B'
  • Le nombre de colonnes de B et D est égal au nombre de lignes de C' et D'

on a alors l'égalité

 M  N =  \begin{pmatrix} A  A' + B  C'& A  B' + B  D' \\ C  A' + D  C' & C  B' + D  D' \end{pmatrix}

On remarquera l'analogie entre le produit de matrice par blocs et le produit de deux matrices carrées d'ordre 2.

N.B. : On ne définit pas ainsi une nouvelle forme de multiplication de matrices. Cela correspond simplement à une méthode de calcul du produit matriciel ordinaire pouvant simplifier les calculs.

Produit d'Hadamard[modifier | modifier le code]

Article détaillé : Produit matriciel de Hadamard.

Pour deux matrices de même type, nous avons le produit d'Hadamard ou produit composante par composante. Le produit d'Hadamard de deux matrices A=(a_{ij}) et B=(b_{ij}) de type (m, n), noté A · B = (cij), est une matrice de type (m, n) donnée par

c_{ij}=a_{ij}\times b_{ij}

Par exemple :


  \begin{pmatrix}
    1 & 3 & 2 \\ 
    1 & 0 & 0 \\ 
    1 & 2 & 2
  \end{pmatrix}
\cdot
  \begin{pmatrix} 
    0 & 0 & 2 \\ 
    7 & 5 & 0 \\ 
    2 & 1 & 1
  \end{pmatrix}
=
  \begin{pmatrix} 
    1 \times 0 & 3 \times 0 & 2 \times 2 \\ 
    1 \times 7 & 0 \times 5 & 0 \times 0 \\ 
    1 \times 2 & 2 \times 1 & 2 \times 1
  \end{pmatrix}
=
  \begin{pmatrix} 
    0 & 0 & 4 \\ 
    7 & 0 & 0 \\ 
    2 & 2 & 2
  \end{pmatrix}

Ce produit est une sous-matrice du produit de Kronecker (voir ci-dessous).

Produit de Kronecker[modifier | modifier le code]

Article détaillé : Produit de Kronecker.

Pour deux matrices arbitraires A=(a_{ij}) et B, nous avons le produit tensoriel ou produit de Kronecker AB qui est défini par


  \begin{pmatrix} 
    a_{11}B & a_{12}B & \cdots & a_{1n}B \\ 
    \vdots & \vdots & \ddots & \vdots \\ 
    a_{m1}B & a_{m2}B & \cdots & a_{mn}B
  \end{pmatrix}

Si A est une matrice de type (m, n) et B est une matrice de type (p, r) alors AB est une matrice de type (mp, nr). À nouveau cette multiplication n'est pas commutative.

Par exemple


  \begin{pmatrix} 
    1 & 2 \\ 
    3 & 1 \\ 
  \end{pmatrix}
\otimes
  \begin{pmatrix} 
    0 & 3 \\ 
    2 & 1 \\ 
  \end{pmatrix}
=
  \begin{pmatrix} 
    1\times 0 & 1\times 3 & 2\times 0 & 2\times 3 \\ 
    1\times 2 & 1\times 1 & 2\times 2 & 2\times 1 \\ 
    3\times 0 & 3\times 3 & 1\times 0 & 1\times 3 \\ 
    3\times 2 & 3\times 1 & 1\times 2 & 1\times 1 \\ 
  \end{pmatrix}
=
  \begin{pmatrix} 
    0 & 3 & 0 & 6 \\ 
    2 & 1 & 4 & 2 \\
    0 & 9 & 0 & 3 \\
    6 & 3 & 2 & 1
  \end{pmatrix}
.

Si A et B sont les matrices d'applications linéaires V1W1 et V2W2, respectivement, alors AB représente le produit tensoriel des deux applications, V1V2W1W2.

Propriétés communes[modifier | modifier le code]

Les trois multiplications matricielles précédentes sont associatives

A \times (B \times C) = (A \times B) \times C,

distributives par rapport à l'addition :

A \times (B + C) = A \times B + A \times C
(A + B) \times C = A \times C + B \times C

et compatibles avec la multiplication par un scalaire :

c(A \times B) = (cA) \times B = A \times (cB)

Multiplication par un scalaire[modifier | modifier le code]

La multiplication par un scalaire r d'une matrice A=(a_{ij}) donne le produit

rA=(ra_{ij}).

Si nous travaillons avec des matrices sur un anneau, alors la multiplication par un scalaire est parfois appelée la multiplication à gauche tandis que la multiplication à droite est définie par :

Ar=(a_{ij} r).

Quand l'anneau fondamental est un anneau commutatif, par exemple, le corps des réels ou des complexes, les deux multiplications sont identiques.

Cependant, si l'anneau n'est pas commutatif, tel que celui des quaternions, alors ils peuvent être différents. Par exemple


  i\begin{pmatrix} 
    i & 0 \\ 
    0 & j \\ 
  \end{pmatrix}
= \begin{pmatrix}
    -1 & 0 \\
     0 & k \\
  \end{pmatrix}
\ne \begin{pmatrix}
    -1 & 0 \\
    0 & -k \\
  \end{pmatrix}
= \begin{pmatrix}
    i & 0 \\
    0 & j \\
  \end{pmatrix}i

Notes et références[modifier | modifier le code]

  1. Alain Connes, Triangle de pensées, Edition Odile Jacob, p.72.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]