Premier ordinal non dénombrable

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, le premier ordinal non dénombrable, noté ω₁ ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable.

Principales propriétés[modifier | modifier le code]

ω₁ est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments.

Comme tout ordinal (dans l'approche de von Neumann), ω₁ est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈. C'est un ordinal limite, c'est-à-dire qu'il n'est pas de la forme α + 1.

Le cardinal de l'ensemble ω₁ est le deuxième nombre cardinal infini et est noté ℵ₁ (aleph-1). L'ordinal ω₁ est donc l'ordinal initial de ℵ₁. Dans la plupart des constructions, ω₁ et ℵ₁ sont égaux en tant qu'ensembles. Plus généralement : si α est un ordinal arbitraire, on peut définir ωα comme l'ordinal initial du cardinal ℵα.

On peut démontrer l'existence de ω₁ sans l'axiome du choix (voir l'article Ordinal de Hartogs).

Espace topologique associé[modifier | modifier le code]

Tout ordinal α peut être muni de la topologie de l'ordre. Cet espace topologique associé à α est souvent noté [0, α[, pour souligner que c'est l'espace de tous les ordinaux strictement inférieurs à α. L'espace [0, ω₁[ est utilisé pour définir la longue droite et la planche de Tychonoff, deux contre-exemples importants en topologie.

Toute ω-suite croissante d'éléments de [0, ω₁[ converge dans [0, ω₁[, puisque l'ordinal supremum (i.e. la réunion) d'un ensemble dénombrable d'ordinaux dénombrables est encore dénombrable.

L'espace [0, ω₁[ est séquentiellement compact mais non compact. Par conséquent, il n'est ni de Lindelöf (car la compacité séquentielle implique la compacité dénombrable), ni métrisable (d'après le théorème de Bolzano-Weierstrass). Il n'est même pas paracompact, mais il est monotonement normal.

En termes d'axiomes de dénombrabilité (en), [0, ω₁[ est un espace à bases dénombrables de voisinages (donc séquentiel) et n'est pas séparable (donc pas à base dénombrable d'ouverts).

Dans son compactifié d'Alexandroff [0, ω₁] = ω₁ + 1, l'élément ω₁ n'a pas de base de voisinages dénombrable.

Références[modifier | modifier le code]

Articles connexes[modifier | modifier le code]