Polygone de Petrie

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Polygone de Pétrie)
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Petrie.
Le polygone de Petrie d'un octaèdre régulier est de forme hexagonale

En géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions.

Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois. Cette définition s'étend aux polytopes de dimensions supérieures : chaque groupe de n – 1 côtés consécutifs appartient à une même hyperface du polytope, mais pas n.

Le polygone de Petrie d'un polygone régulier est lui-même, car il est déjà dans le plan de projection.

Histoire[modifier | modifier le code]

John Flinders Petrie, fils unique de l'égyptologue Flinders Petrie, naquit en 1907. Il montra à l'école de remarquables aptitudes en mathématiques. En se concentrant, il pouvait répondre aux questions sur des objets quadridimensionnels en les visualisant mentalement.

Il fut le premier à réaliser l'importance des polygones visibles seulement sous un certain angle par transparence, et dont les sommets n'étaient pas coplanaires, sur la surface des polyèdres et des polytopes des dimensions au-dessus. Il fut un grand ami de Coxeter, qui nomma ces polygones en son honneur. L'idée des polygones de Petrie a été étendue bien plus tard aux polytopes semi-réguliers.

En 1972, quelques mois après sa retraite, Petrie fut tué par une voiture alors qu'il essayait de traverser une grande route à côté de sa maison dans le Surrey.

Polygones de Petrie des polyèdres réguliers[modifier | modifier le code]

Les seuls polyèdres réguliers convexes sont les cinq solides de Platon. Le polygone de Petrie d'un polyèdre régulier {p, q} (voir symbole de Schläfli) possède h côtés, où

cos2(π/h) = cos2(π/p) + cos2(π/q).

Les polyèdres duaux, {p, q} et {q, p}, sont donc contenus par les mêmes polygones de Petrie.

Polygones de Petrie pour les polyèdres réguliers (en rouge)
Petrie polygons.png
tétraèdre cube octaèdre dodécaèdre icosaèdre
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.png CDW ring.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png CDW ring.pngCDW 5.pngCDW dot.pngCDW 3.pngCDW dot.png CDW ring.pngCDW 3.pngCDW dot.pngCDW 5.pngCDW dot.png
centré sur une arête centré sur un sommet centré sur une face centré sur une face centré sur un sommet
4 côtés 6 côtés 6 côtés 10 côtés 10 côtés
V:(4,0) V:(6,2) V:(6,0) V:(10,10,0) V:(10,2)

Les polygones de Petrie sont les bords (en rouge) de ces projections orthogonales. Les lignes bleues représentent les arêtes de devant, et les lignes noires les arêtes de derrière.

Les sommets, qui sont sur des cercles concentriques, sont comptés par "couches" à partir de l'extérieur jusqu'à l'intérieur, par la notation du polygone de Petrie : V:(a,b,...) avec un 0 à la fin si la couche centrale est vide.

Polygones de Petrie des polytopes réguliers de dimensions supérieures[modifier | modifier le code]

Les polygones de Petrie pour les polychores réguliers {p, q, r} (voir symbole de Schläfli) peuvent également être déterminés.

Les polychores duaux {p, p, q} et {p, q, q} sont contenus par les mêmes polygones de Petrie.

Polygones de Petrie des 6 polychores réguliers (polytopes réguliers à 4 dimensions)
Complete graph K5.svg
{3,3,3}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
pentachore (4-simplexe)
5 côtés
V:(5,0)
Cross graph 4.svg
{3,3,4}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 4.pngCDW dot.png
hexadécachore (4-hyperoctaèdre)
8 côtés
V:(8,0)
Hypercubestar.svg
{4,3,3}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
tesseract (4-hypercube)
8 côtés
V:(8,8,0)
24-cell graph ortho.png
{3,4,3}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 4.pngCDW dot.pngCDW 3b.pngCDW dot.png
24-cellules
12 côtés
V:(12,6,6,0)
120-cell petrie polygon.svg
{5,3,3}
CDW ring.pngCDW 5.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
120-cellules
30 côtés
V:((30,60)3,603,30,60,0)
600-cell petrie polygon.svg
{3,3,5}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 5.pngCDW dot.png
600-cellules
30 côtés
V:(30,30,30,30,0)

Ensuite, comme l'a démontré Ludwig Schläfli, il n'y a pas plus de 3 polytopes réguliers par dimension, et cela dès la cinquième. Ces trois n-polytopes réguliers appartiennent respectivement à 3 grandes familles de polytopes : les n-simplexes, les hyperoctaèdres et les hypercubes.

Le polygone de Petrie pour un polytope régulier {p, q, r, … , w} peut aussi être déterminé.

La famille des simplexes[modifier | modifier le code]

Dans la famille des simplexes, tout n-simplexe est projeté dans un polygone à n + 1 côtés, avec les sommets à la périphérie.

Pour un simplexe, toutes les diagonales du polygone de Petrie sont tracées.

Les simplexes sont des polytopes auto-duaux : chaque simplexe est son propre dual, car la permutation des 3 de sa notation de Schläfli {3,3,3,...,3} est invariante.

Polygones de Petrie des n-simplexes
n = 1
Complete graph K2.svg
{}
CDW ring.png
segment
1-simplexe
2 côtés (le segment est alors considéré en tant que digone)
V:(2,0)
n = 2
Complete graph K3.svg
{3}
CDW ring.pngCDW 3b.pngCDW dot.png
triangle
2-simplexe
3 côtés
V:(3,0)
n = 3
Complete graph K4.svg
{3,3}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
tétraèdre
3-simplexe
4 côtés
V:(4,0)
n = 4
Complete graph K5.svg
{33}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
Pentachore
4-simplexe
5 côtés
V:(5,0)
n = 5
Complete graph K6.svg
{34}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
5-simplexe
6 côtés
V:(6,0)
n = 6
Complete graph K7.svg
{35}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
6-simplexe
7 côtés
V:(7,0)
n = 7
Complete graph K8.svg
{36}CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
7-simplexe
8 côtés
V:(8,0)
n = 8
Complete graph K9.svg
{37}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
8-simplexe
9 côtés
V:(9,0)
n = 9
Complete graph K10.svg
{38}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
9-simplexe
10 côtés
V:(10,0)
n = 10
Complete graph K11.svg
{39}
CDW ring.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.pngCDW 3b.pngCDW dot.png
10-simplexe
11 côtés
V:(11,0)

La famille des hypercubes[modifier | modifier le code]

Dans la famille des hypercubes, tout n-hypercube est projeté dans un polygone à 2n côtés.

Les duaux respectifs des hypercubes {4,3,3,3,...,3} sont les hyperoctaèdres {3,3,3,...,3,4}.

Polygones de Petrie des hypercubes
n = 1
Complete graph K2.svg
{}
CDW ring.png
segment (digone)
2 côtés
V:(2,0)
n=2
2-cube column graph.svg
{4}
CDW ring.pngCDW 4.pngCDW dot.png
carré
4 côtés
V:(4,0)
n = 3
Cube graph ortho vcenter.png
{4,3}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.png
cube
6 côtés
V:(6,2)
n = 4
Hypercubestar.svg
{4,32}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
tesseract
8 côtés
V:(8,8,0)
n = 5
Penteract ortho petrie.svg
{4,33}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
penteract (en)
10 côtés
V:(10,10,10,2)
n = 6
Hexeract ortho petrie.svg
{4,34}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
hexéract
12 côtés
n = 7
Hepteract ortho petrie.svg
{4,35
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
heptéract
14 côtés
n = 8
Octeract Petrie polygon.svg
{4,36}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
octéract
16 côtés
n = 9
Enneract ortho petrie.svg
{4,37}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
ennéract
18 côtés
n = 10
10cube ortho polygon.svg
{4,38}
CDW ring.pngCDW 4.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.png
décaract
20 côtés

La famille des hyperoctaèdres[modifier | modifier le code]

Dans la famille des hyperoctaèdres, tout n-octaèdre est projeté dans un polygone de Petrie à 2n côtés.

Les duaux respectifs des hyperoctaèdres {3,3,3,...,3,4} sont les hypercubes {4,3,3,3,...,3}.

Polygones de Petrie des hyperoctaèdres
n = 1
Complete graph K2.svg
{}
CDW ring.png
2 côtés
V:(2,0)
n = 2
Cross graph 2.svg
{4}
CDW ring.pngCDW 4.pngCDW dot.png
carré
4 côtés
V:(4,0)
n = 3
Cross graph 3.svg
{3,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
octaèdre
6 côtés
V:(6,0)
n = 4
Cross graph 4.svg
{32,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
16-cellules
8 côtés
V:(8,0)
n = 5
Cross graph 5.svg
{33,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
penta-croisé
10 côtés
V:(10,0)
n = 6
Cross graph 6.svg
{34,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
hexa-croisé
12 côtés
V:(12,0)
n = 7
Cross graph 7.svg
{35,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
hepta-croisé
14 côtés
V:(14,0)
n = 8
Cross graph 8.svg
{36,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
octa-croisé
16 côtés
V:(16,0)
n = 9
Cross graph 9.svg
{37,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
ennéa-croisé
18 côtés
V:(18,0)
n = 10
Cross graph 10 Nodes highlighted.svg
{38,4}
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW dot.pngCDW 4.pngCDW dot.png
déca-croisé
20 côtés
V:(20,0)

Références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Petrie polygon » (voir la liste des auteurs), dont les références étaient :

  • (en) H. S. M. Coxeter, The Beauty of Geometry: Twelve Essays, Dover, 1999 (ISBN 978-0-486-40919-1)
  • (en) H.S.M. Coxeter, Regular complex polytopes, 1974, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons
  • (en) H.S.M. Coxeter, Regular polytopes (en), 3e éd., New York, Dover, 1973 (sec 2.6 Petrie Polygons p. 24-25 et Chapter 12, p. 213-235, The generalized Petrie polygon)
  • (en) H.S.M. Coxeter, Regular complex polytopes, 1974.

Liens externes[modifier | modifier le code]