Polyèdre quasi régulier

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Polyèdre quasi-régulier)
Aller à : navigation, rechercher

Définition[modifier | modifier le code]

Un polyèdre qui possède des faces régulières et qui est transitif sur ses arêtes est dit être quasi régulier.

Un polyèdre quasi régulier peut avoir des faces de deux sortes seulement et celles-ci doivent alterner autour de chaque sommet.

On donne un symbole de Schläfli vertical \begin{Bmatrix} p \\ q \end{Bmatrix} pour représenter cette forme combinée qui contient les faces combinées du polyèdre régulier {p, q} et du dual {q,p}. Un polyèdre quasi régulier avec ce symbole aura une configuration de sommet p.q.p.q.

Les polyèdres quasi réguliers convexes[modifier | modifier le code]

Il existe trois polyèdres quasi réguliers convexes :

  1. L'octaèdre, qui est aussi un polyèdre régulier, \begin{Bmatrix} 3 \\ 3 \end{Bmatrix}, configuration de sommet 3.3.3.3.
  2. Le cuboctaèdre \begin{Bmatrix} 3 \\ 4 \end{Bmatrix}, configuration de sommet 3.4.3.4.
  3. L'icosidodécaèdre \begin{Bmatrix} 3 \\ 5 \end{Bmatrix}, configuration de sommet 3.5.3.5.

Chacun d'entre eux forme le noyau commun d'une paire duale de polyèdres réguliers. Les noms des deux derniers listés donnes des indices pour la paire duale associée, respectivement le cube + l'octaèdre et l'icosaèdre + le dodécaèdre. L'octaèdre est le noyau d'une paire duale de tétraèdres (un arrangement connu sous le nom octangle étoilé), et lorsqu'il est dérivé de cette manière, il est quelquefois appelé le tétratétraèdre.


Les duaux quasi réguliers sont aussi caractérisés par leurs faces rhombiques.

Régulier Dual régulier Quasi régulier Dual Quasi régulier
Tétraèdre
Tétraèdre
{3,3}
Tétraèdre
Tétraèdre
{3,3}
Stella octangula.png
Tétratétraèdre
3.3.3.3
Stella octangula.png
Tétratétraèdre
3.3.3.3
Cube
Cube
{4,3}
Octaèdre
Octaèdre
{3,4}
Cuboctaèdre
Cuboctaèdre
3.4.3.4
Dodécaèdre rhombique
Dodécaèdre rhombique
4.3.4.3
Dodécaèdre
Dodécaèdre
{5,3}
Icosaèdre
Icosaèdre
{3,5}
Icosidodécaèdre
Icosidodécaèdre
3.5.3.5
Triacontaèdre rhombique
Triacontaèdre rhombique
5.3.5.3

Chacun de ces polyèdres quasi réguliers peut être construit par une opération de rectification sur le parent régulier, en tronquant pleinement les arêtes, jusqu'à ce que les arêtes originales soient réduites à un point.

Exemples non-convexes[modifier | modifier le code]

Coxeter, H.S.M. et.al. (1954) ont classé aussi certains polyèdres étoilés ayant les mêmes caractéristiques et étant quasi réguliers :


Régulier Dual régulier Quasi régulier
Grand icosaèdre
Grand icosaèdre
Grand dodécaèdre étoilé
Grand dodécaèdre étoilé
Grand icosidodécaèdre
Grand icosidodécaèdre
Grand dodécaèdre
Grand dodécaèdre
Petit dodécaèdre étoilé
Petit dodécaèdre étoilé
Dodécadodécaèdre
Dodécadodécaèdre


Dodécadodécaèdre ditrigonal Petit icosidodécaèdre ditrigonal Grand icosidodécaèdre ditrigonal
Dodécadodécaèdre ditrigonal Petit icosidodécaèdre ditrigonal Grand icosidodécaèdre ditrigonal

Duaux quasi réguliers[modifier | modifier le code]

Certaines autorités font remarquer que, puisque les duaux des solides quasi réguliers partagent les mêmes symétries, ces duaux doivent être aussi quasi réguliers. Mais tout le monde n'accepte pas ce point de vue. Ces duaux ont des sommets réguliers et sont transitifs sur leurs arêtes. Ils sont, en ordre correspondant avec ci-dessus :

Les duaux quasi réguliers sont aussi caractérisés par leurs faces rhombiques.

Voir aussi[modifier | modifier le code]

Références[modifier | modifier le code]

  • Coxeter, H.S.M. Longuet-Higgins, M.S. and Miller, J.C.P. Uniform Polyhedra, Philosophical Transactions of the Royal Society of London 246 A (1954), pp. 401-450.
  • Cromwell, P. Polyhedra, Cambridge University Press (1977).