Pile à combustible à membrane d'échange de protons

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Diagramme d'une PEMFC.

Les piles à combustible à membrane d'échange de protons, connues aussi sous le nom de piles à combustible à membrane électrolyte polymère (ou PEMFC selon l'acronyme des expressions anglaises proton exchange membrane fuel cells ou polymer electrolyte membrane fuel cells) sont un type de piles à combustible développées pour des applications dans les transports aussi bien que pour des applications dans les portables. Leurs caractéristiques propres incluent un fonctionnement des gammes de basses pressions et températures et une membrane électrolyte polymère spécifique.

Fonctionnement[modifier | modifier le code]

Réactions[modifier | modifier le code]

Article détaillé : Pile à combustible.

Une PEMFC transforme l'énergie chimique libérée durant la réaction électrochimique du dihydrogène (H2) et du dioxygène (O2) en énergie électrique, processus "opposé" à la réaction thermochimique de ces deux corps produisant de l'énergie thermique. Un jet d'hydrogène est dirigé vers le côté anode de l'assemblage de la membrane-électrode (MEA). Il est à cet instant divisé catalytiquement en protons et électrons. Cette réaction d'oxydation dans la demi-cellule est décrite par :

\mathrm{H}_2 \rightarrow \mathrm{2H}^+ + \mathrm{2e}^-

Dans le même temps, un flux d'oxygène est dirigé du côté cathode du MEA. Les molécules de dioxygène réagissent avec les protons traversant la membrane électrolyte polymère et les électrons arrivant par le circuit externe afin de former des molécules d'eau. Cette réaction de réduction dans la demi-cellule électrolytique est :

\mathrm{4H}^+ + \mathrm{4e}^- + \mathrm{O}_2 \rightarrow \mathrm{2H}_2\mathrm{O}

PEMFC : schéma d'application.

Membrane électrolyte polymère[modifier | modifier le code]

Pour que la pile fonctionne, la membrane doit conduire les ions hydrogène (protons), mais pas les électrons, ce qui créeraient un court-circuit dans la pile à combustible. La membrane ne doit pas non plus permettre le passage d'aucun gaz d'un côté à l'autre de la cellule. Ce phénomène est connu sous le nom de gas crossover (croisement de gaz). Enfin, la membrane doit résister à l'environnement réducteur à l'anode et, en même temps, à un environnement oxydant à la cathode.

Si la dissociation de la molécule de dihydrogène en deux atomes d'hydrogène est relativement facile en utilisant comme catalyseur du platine, la dissociation de la molécule de dioxygène est malheureusement plus difficile, ce qui cause des pertes énergétiques significatives. Un matériau qui catalyserait efficacement ce processus n'a pas encore été découvert et le platine reste la meilleure option. Une autre source significative de pertes est la résistance de la membrane au flux de protons. Cette résistance est minimisée en rendant la membrane aussi fine que possible (de l'ordre de 50 μm).

La PEMFC est une candidate de premier plan pour équiper les véhicules et d'autres applications mobiles de toutes tailles (jusqu'au téléphone mobile) en raison de sa compacité. Cependant, la gestion de l'eau est cruciale pour ses performances : trop d'eau noierait la membrane, trop peu l’assécherait ; dans les deux cas, le rendement serait faible. La gestion de l'eau est un sujet très pointu dans les systèmes PEM. De plus, le platine est facilement empoisonné par le monoxyde de carbone CO. Moins d'un ppm est habituellement accepté. Par ailleurs, la membrane est sensible aux ions métalliques qui seraient introduits par la corrosion des palettes bipolaires métalliques.

Les systèmes PEM qui utilisent du dihydrogène obtenu par réformage du méthanol (CH3OH) ont été proposés, comme dans le Necar 5 de Daimler Chrysler. Le reformage du méthanol permet en effet d'obtenir du dihydrogène. Cependant ce processus complexe nécessite aussi une élimination du monoxyde de carbone également produit par la réaction.

CH3OH→ 2H2 + CO

Un catalyseur platine-ruthénium est nécessaire pour éviter que plus de 10ppm de monoxyde de carbone n'atteigne la membrane. On notera de plus que les temps nécessaires de démarrage de ces réacteurs de reformage sont de l'ordre d'une demi-heure. Cependant, et de manière alternative, le méthanol les autres biocarburants peuvent alimenter la PEMFC sans être reformés, ce qui en fait une DMFC. Ces procédés fonctionnent avec un succès limité.

Le type de membrane le plus couramment utilisé est le Nafion, un polymère fluoré fabriqué par de DuPont, qui est fondé sur une humidification de la membrane par de l'eau liquide pour le transport des protons. Cela implique une température de fonctionnement en deçà de 80 - 90 ˚C sous peine de voir la membrane sécher. D'autres types de membranes plus récents, basés sur le polybenzimidazole (PBI) dopé avec de l'acide phosphorique[1], peuvent atteindre 220 ˚C sans nécessiter de gestion d'eau : les hautes températures permettent de meilleurs efficacités et densités énergétiques, facilitent le refroidissement (en raison des marges de températures plus importantes), réduisent la sensibilité à l'empoisonnement au CO et accroissent le contrôle sur le processus (absence de gestion d'eau pour la membrane). Cependant, ces nouveaux types ne sont pas courants et la plupart des laboratoires de recherche utilisent le nafion, ce qui se retrouve dans leurs publications scientifiques. Parmi les entreprises produisant des membranes PBI on retrouve Celanese et PEMEAS, et il existe actuellement un projet de recherche européen travaillant sur ces membranes.

Le rendement des PEM est de l'ordre de 40 à 50 %.

Historique[modifier | modifier le code]

Avant l'invention des PEMFC, les types de piles à combustible existants comme les piles à combustible à oxyde solide étaient seulement employés dans des conditions extrêmes. De telles piles nécessitaient de plus des matériaux très coûteux et ne pouvaient être utilisées que pour des applications statiques en raison de leur taille. Ces questions se posaient aussi pour les PEMFC. Les PEMFC furent inventées au début des années 1960 par Willard Thomas Grubb et Lee Niedrach de General Electric (voir [1] en (en)). Des membranes en polystyrène sulfonaté furent initialement utilisées pour les électrolytes, mais elles furent remplacées en 1966 par l'ionomère nafion, supérieur en performance et durabilité.

Les PEMFC furent utilisées pour les engins spatiaux du programme Gemini de la NASA, mais elles furent remplacées par des piles à combustible alcalines lors du programme Apollo et dans la navette spatiale. En parallèle avec Pratt & Whitney, General Electric développa la première pile à combustible à membrane échangeuse de protons pour les missions spatiales Gemini au début des années 1960. La première mission à utiliser les PEMFC fut Gemini V. Cependant, les missions spatiales Apollo et leurs "héritiers" Apollo-Soyouz, Skylab et la navette spatiale ont employé des piles à combustible construites sur les plans de Bacon, développés par Pratt & Whitney.

Des matériaux extrêmement coûteux furent utilisés, et les piles à combustible requéraient de l'hydrogène et de l'oxygène très purs. Les premières piles tendaient aussi à fonctionner sous hautes températures, constituant ainsi un problème pour de nombreuses applications. Cependant, les piles à combustible étaient perçues comme intéressantes en raison des larges quantités de combustibles disponibles (H2, O2).

Malgré leurs succès dans les programmes spatiaux, les systèmes à piles à combustible étaient limités aux missions spatiales et autres applications spécifiques pour lesquels des coûts élevés pouvaient être tolérés. Ce ne fut qu'à la fin des années 1980 et du début des années 1990 que les piles à combustible devinrent une option réelle pour des applications de bases plus larges. De nombreuses innovations intéressantes, comme une baisse du besoin en platine comme catalyseur ou des électrodes en couches minces, conduisirent à diminuer les coûts, rendant plus ou moins réaliste le développement des systèmes PEMFC. Cependant, il existe un débat important sur l'intérêt de l'hydrogène comme combustible pour les véhicules depuis quelques décennies (on pourra voir à ce propos The Hype about Hydrogen par Joseph J. Romm, publié en 2004).

Marché des PEMFC[modifier | modifier le code]

On pourra citer comme fabricants :

Notes et références[modifier | modifier le code]

  1. Mecerreyes et al. Chem. Mater. (2004), 16, 604

Liens externes[modifier | modifier le code]