Olfaction

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Le système olfactif est, avec l’ouïe, l’organe des sens spatialement le plus proche du cerveau. Il est aussi le premier à se former lors de l’embryogenèse.

L'olfaction ou l'odorat est le sens qui permet d'analyser les substances chimiques volatiles (odeurs) présentes dans l’air, ce sens est moins utilisé chez l’être humain que chez de nombreux mammifères pour lesquels il est prépondérant, néanmoins, l'odeur personnelle semble encore jouer un ou plusieurs rôles en termes de communication non verbale[1], à plusieurs âges de la vie, avec des nuances notamment selon le sexe (Homme/Femme)[2], selon l'âge ou selon les contextes socio-culturels[3],[4].

Importance[modifier | modifier le code]

L'odorat des canidés est réputé être l'un des meilleurs parmi les mammifères. C'est une des raisons qui explique qu'ils ont été très utilisés comme chien de chasse, de garde ou de sauveteur

L'olfaction est un sens vital pour de nombreuses espèces[5] ; Il est par exemple utile ou nécessaire pour les activités de recherche alimentaire (chasse, recherche de végétaux appétents, etc), l’évitement des prédateurs, la localisation du lieux de nidification, ponte, reproduction, mise bas, etc., pour la reconnaissance et le marquage du territoire, pour la communication entre individu par messages olfactifs, pour la recherche de partenaires sexuels, et pour la pollinisation des fleurs, etc.

Coupe transversale de la cavité nasale humaine. En jaune : le bulbe olfactif et ses ramifications nerveuses

Chez l'être humain, l'individu est généralement naturellement capable de distinguer sa propre odeur, celle de son partenaire de couple et de certains de ses proches, et celles d'autres personnes[1], mais cette capacité peut être fortement dégradée par l'usage de désodorisant de parfums ou de certaines pratiques d'hygiène corporelle[1]. Le cerveau et d'autres organes (cœur) continuent à réagir à certains stimuli olfactifs durant le sommeil[6]. Au troisième jour, le nouveau né se montre capable de réagir à l'odeur de sa mère, à celle du lait maternel (ou du lait artificiel s'il a commencé à être nourri avec ce lait précocement) ou de répondre par des mimiques différentes à une odeur agréable (vaniline) ou désagréable (acide butyrique)[7]. La plupart des études ayant comparé les capacités olfactives des hommes et des femmes ont conclu que les femmes sont plus douées que les hommes pour détecter les odeurs, les identifier, les discriminer et les mémoriser[2]. L'imagerie fonctionnelle et les études électrophysiologiques vont dans le même sens (quand des différences de sexe existent)[2]. Le cycle menstruel, la grossesse, la gonadectomie, et l'hormonothérapie substitutive influencent l'olfaction féminine. Bien que l'importance des phéromones soient discutées chez l'être humain, il semble exister une relation complexe entre hormones de la reproduction humaine et la fonction olfactive[2].

Certaines odeurs peuvent aussi aider à se concentrer sur une tâche difficile ; On a ainsi expérimentalement montré que la diffusion épisodique d'une odeur telle que celle de la menthe poivrée pouvait améliorer les résultats d'un exercice difficile impliquant une double tache (Dual-task) complexe, mais n'améliorait pas les résultats à un test facile[8]. Chez de nombreux animaux, l'odorat est bien plus important que pour l'être humain[5]. Ainsi, les corridors biologiques (y compris aquatiques) sont-ils pour de nombreuses espèces des corridors de parfums et d'odeurs. Ils sont d'ailleurs surtout utilisés de nuit ou dans la pénombre le matin et le soir. Le goût, qui permet de détecter les substances chimiques en solution, est un sens proche de celui de l'odorat. Il n'existe d'ailleurs pas de distinction entre goût et odorat en milieu aquatique[9].

Mécanisme chez l’humain[modifier | modifier le code]

C'est dans la zone corticale préfrontale que le cerveau traite les informations concernant le goût et l'odeur

L’olfaction est la fonction sensorielle qui correspond à la perception des substances odorantes. Il s'agit généralement de la perception consciente, qui peut être sollicitée par voie directe (flairage) ou par voie rétro-nasale. Cette fonction est assurée par la muqueuse olfactive qui couvre environ 10 % soit 2 cm2 de la surface totale de la cavité nasale[9]. Des cellules glandulaires, présentes dans la muqueuse et dans la sous-muqueuse, sécrètent un mucus tapissant l'épithélium olfactif, ce qui assure un lavage permanent de la muqueuse.

Cette muqueuse olfactive est composée de neurones olfactifs, bien plus sensibles que les gustatifs[9]. Ces neurones sont des neurones spécialisés bipolaires : ils présentent des cils à l'extrémité des dendrites qui baignent dans la couche de mucus tapissant la cavité nasale et qui aboutissent dans l'épithélium olfactif, un corps cellulaire situé dans le premier tiers de la muqueuse, et un axone communiquant avec le bulbe olfactif. Les neurones olfactifs, comme les neurones gustatifs, et contrairement aux autres neurones[citation nécessaire], se renouvèlent constamment tous les mois ou deux mois[9]. On lit aussi sur Wikipedia : Contrairement à ce qui se passe chez les rongeurs, les cellules nerveuses du bulbe olfactif humain ne se renouvellent pas ou très peu (moins de 1 % en 100 ans) (neurogenèse adulte)[10],[11].

Les molécules odorantes arrivent soit directement par diffusion dans le mucus, soit sont prises en charge par des protéines de transport (odor binding protein ou OBP) qui permettent aux molécules hydrophobes - majoritaires - de pénétrer dans le mucus recouvrant l'épithélium, et ainsi d'atteindre les récepteurs membranaires présents sur les cils des neurones olfactifs. On pense que ces protéines de transports concentreraient les molécules odorantes sur les récepteurs membranaires. En tant que ligands, les molécules odorantes se couplent avec les récepteurs membranaires des cils ce qui déclenche une voie de transduction d'un stimulus faisant intervenir des protéines G (premier messager), l'enzyme adénylate cyclase, et l'adénosine monophosphate cyclique (second messager). Le second messager provoque l'ouverture des canaux ioniques présents sur la membrane plasmique du récepteur olfactif. Ces canaux ioniques laissent passer à la fois les ions Na+ et les ions Ca2+, induisant une dépolarisation de la membrane de sorte que le récepteur olfactif produit des potentiels d'action. Ces influx vont aller directement vers le bulbe olfactif, dans la région préfrontale du cerveau, où ces informations (et celles du goût) sont traitées par l'organisme.

Chaque type de récepteur olfactif (400 différents types de protéines de récepteurs olfactif sont répertoriées[12]) semble posséder une sensibilité particulière, qui recouvre partiellement, mais non totalement, celles des autres cellules. Cela signifie qu'une molécule définie active un ensemble unique de récepteurs (chacun de ces récepteurs répondant avec une intensité qui lui est propre). Les axones des neurones olfactifs portant le même récepteur convergent vers une même structure synaptique (glomérule) localisé au sein du bulbe olfactif. Cette activation « géographique » se traduit ensuite par un motif spatiotemporel nerveux particulier au sein du bulbe olfactif et interprétée comme une odeur par le cerveau.

Principes de la Rétro-olfaction (en bleu) et ortho-olfaction (en violet) jusqu'à l'épithélium olfactif.

Les millions d'odeurs détectables par l'humain sont chacune créées par une substance odorante structuralement distincte des autres. Pour être odorante, la substance doit avoir un poids moléculaire compris entre certaines valeurs et être volatile. Le mécanisme est encore assez mal connu, mais des progrès considérables ont été accomplis ces dernières années dans sa compréhension[13] suite à la découverte des gènes (plus de 1 000, soit 3 % des gènes humains[9]) qui codent les protéines réceptrices des odorants. Chaque neurone olfactif n'exprimant qu'un ou quelques-uns de ces gènes, de nombreux récepteurs olfactifs sont donc nécessaires. Les neurones exprimant un même gène de récepteur olfactif transmettent tous leurs potentiels d'action à une même petite zone du bulbe olfactif[9]. Depuis qu'Homo sapiens existe, 60 % de ses gènes olfactifs ont été perdus par inactivation génique mais il lui en reste encore aujourd'hui 350 à 400 actifs[14].

L'odorat humain était considéré comme l'un des sens les moins développés[15]. La littérature scientifique considérait qu'il pouvait détecter 10 000 odeurs différentes mais une étude en 2014 suggère qu'il peut en percevoir plus d'un billion (1 000 milliards)[16]. Ainsi, l'olfaction reste d'une grande importance dans la détermination consciente ou inconsciente de nos comportements. Il existe, en pratique, deux seuils perceptifs. Le plus faible correspond à la détection d'une odeur, mais que le sujet ne peut identifier. Le second seuil correspond à l'identification de l'odeur en question. Certaines molécules, comme les thiols, se détectent à des taux beaucoup plus faibles que d'autres. Certains animaux sont capables de détecter des molécules un milliard de fois plus diluées que le seuil de notre odorat. Enfin, il existe une présomption que certaines molécules (hormones, phéromones) soient détectées par le système olfactif, même si leur perception ne se traduit pas en termes d'odeur « consciente ».

La perception d'une odeur résulte d'un stimulus très rapide, presque instantané, qui comporte plusieurs informations parmi lesquelles, l'intensité et la qualité de l'odeur[17]. Au niveau de l'intensité, notre odorat se comporte comme pour la notion de chaud et de froid. L'intensité du signal est importante au début de la perception puis baisse progressivement avec l'adaptation. Sur le plan qualitatif, notre odorat fonctionne comme pour la notion de goût. Nous pouvons reconnaître, apprécier et classer la qualité d'une odeur.

Bien qu'empruntant des voies nerveuses distinctes, l'odorat et le goût sont étroitement liés et une grande partie de ce qu'on attribue au goût dépend en fait de l'odorat. Ainsi, si l'organe olfactif est congestionné à cause d'un rhume, les sensations de goût s'en trouvent considérablement réduites.

Modulation[modifier | modifier le code]

Comme les autres sens, l'odorat peut être exacerbé par l'attention. Son intensité dépend aussi du rythme circadien[18]. Il a ainsi été montré chez le rat de laboratoire que la performance de la réponse neuronales à une odeur varie selon l'heure[19],[18]. Ainsi, chez le rat, une odeur réputée biologiquement neutre (huile de bois de cèdre, ou huile minérale) est un stimulus odorant mieux perçue en période de nuit subjective par l'odorat du rat que de jour subjectif, de même pour une odeur biologiquement pertinente (alarme) telle que celle de l'urine du renard roux, l'un des principaux prédateurs potentiels du rat[18].

Développement[modifier | modifier le code]

Dans les années 1960, des recherches menées par le professeur Lipsitt ont permis de démontrer qu'il existe des capacités de détection et d'apprentissage des odeurs chez le nouveau-né. Même « in utero », le système olfactif du fœtus est un des premiers sens à se mettre en place entre 11 et 15 semaines[20].

L'exposition du fœtus aux substances odorantes transportées par le liquide amniotique lui donne une première expérience olfactive qui est susceptible d'influencer ses préférences après la naissance[21].

Éléments anatomiques[modifier | modifier le code]

Au niveau anatomique, le système olfactif est composé de deux structures, le système olfactif principal et le système trigéminal. Il existe une troisième partie appelée « organe voméronasal », qui est situé en retrait dans l'orifice des narines. Chez l'homme l'organe voméronasal reste dans un état rudimentaire car ses afférences nerveuses disparaissent dès la 18ème semaine de la vie embryonnaire. Il ne semble pas fonctionnel, mais son implication dans la détection de phéromones fait l’objet d’un vif débat (Giorgi et al., 2000; Foltan et Sedy, 2009; Mast et Samuelsen, 2009). Chez de nombreuses espèces de vertébrés cet organe sensoriel est lié à la perception des phéromones pour sa reproduction ou le marquage de son territoire par exemple.

Troubles de l'odorat[modifier | modifier le code]

Anosmie[modifier | modifier le code]

La perte ou la diminution substantielle de l'odorat est appelée anosmie. Elle est le plus souvent due à des traumatismes, ou à des infections mal soignées (rhinite, ...), mais peut aussi être d'origine génétique ou congénitale. L'anosmie peut concerner toutes les odeurs ou seulement certaines d'entre elles (anosmies spécifiques). Elle est souvent accompagnée d'agueusie (son équivalent lié au goût), quoique cette diminution du goût soit constatée chez les gens ayant perdu l'odorat tardivement. Cette perte d'odorat peut aussi signaler que les sinus sont bouchés, notamment dans la maladie polypose naso-sinusienne.

L'anosmie ou la difficulté de reconnaissance des odeurs peuvent être des signes précurseurs de maladies neurodégénératives, telle la maladie d'Alzheimer ou la maladie de Parkinson, ou d'autres problèmes différents des pertes sensorielles "normales", liées au vieillissement[22]. Il a d'ailleurs été constaté, chez des souris de laboratoires modifiées pour produire naturellement des plaques amyloïdes, reproduisant ainsi ce qu'on observe chez l'homme dans le cas de maladie d'Alzeimer, que la première partie touchée par la dégénérescence du cerveau est celle qui est responsable de l'odorat de la souris, située entre le centre du cerveau et le museau[22]. Les premiers symptômes sont effectivement une diminution des capacités olfactives de la souris, de façons très rapides et sensibles, puisque détectés dès les premières plaques, vers 3 mois (chez la souris modifiée)[22]. Ceci laisse penser qu'un test olfactif peut être une des alternatives aux méthodes plus coûteuses (scanner, etc.) de diagnostic précoce de la maladie d'Alzheimer »[22].

La perte d'odorat peut avoir des effets variés sur l'organisme des gens qui en sont atteints. On constate souvent une période de forte dépression liée à l'anosmie, accompagnée de symptômes divers, parmi lesquels un amoindrissement de l'appétit et de l'excitation sexuelle.

Un test efficace quels que soient l'âge et la culture du patient et n'impliquant pas les capacités de mémoire est basé sur l'inhalation de parfums très désagréables : Une personne normale bloque (par réflexe) sa respiration dès le début de l'inhalation, alors qu'un déficient olfactif inhalera plus longtemps avant de détecter l'odeur ou ne la détectera pas[23].

Hyperosmie[modifier | modifier le code]

L'hyperosmie est une augmentation de la capacité olfactive, par exemple avoir la capacité d'identifier la dernière personne à avoir quitté une chaise grâce à son odeur. On retrouve ce symptôme chez les personnes atteintes d'algie vasculaire de la face, de migraines, ou d'insuffisance surrénalienne chronique primaire[24].

Cacosmie[modifier | modifier le code]

Trouble de l'odorat qui amène les patients à aimer ou percevoir des odeurs fétides, putrides ou réputées désagréables. La cacosmie peut avoir une origine physiologique (rhinite, sinusite, tumorale) ou psychologique. Souvent confondu avec la cacostomie qui désigne l'exhalaison d'odeurs désagréables. Celles-ci proviennent de troubles fonctionnels (de la bouche ou du système digestif).

Utilisations particulières[modifier | modifier le code]

Des chiens ont été dressé avec succès pour repérer à l'odorat des gouttes de mercure par exemple piégées dans la moquette ou dans les fentes d'un plancher, des instruments contaminés, des puits, des égouts.. Deux labradors ont ainsi en Suède pu aider à repérer 1,3 t de mercure collectées, dans les 1 000 écoles ayant participé au projet « Mercurius 98 »[25]. Aux États-Unis, un chien dressé a permis de récupérer 2 t de mercure dans les écoles du Minnesota[26].

En France, des opérations « Nez de Cléopatres » demandant à des citoyens de noter leurs sensations olfactives à la fenêtre ou au balcon une fois par jour, ont permis de mieux suivre le trajet de certaines pollutions dans des villes industrielles (par exemple Calais), en cartographiant ces données, croisées avec celles de la météo[27].

Notes et références[modifier | modifier le code]

  1. a, b et c Margret Schleidt, Personal odor and nonverbal communication Original ; Ethology and Sociobiology, Volume 1, Issue 3, September 1980, Pages 225-231 (résumé)
  2. a, b, c et d Richard L. Doty, E. Leslie Cameron (2009), Sex differences and reproductive hormone influences on human odor perception ; Physiology & Behavior, Volume 97, Issue 2, 25 May 2009, Pages 213-228
  3. Sex differences in physiology and behavior: focus on central actions of ovarian hormones, Edited By Kathleen Curtis and Eric Krause Physiology & Behavior, Volume 97, Issue 2, 25 May 2009, Pages 213–228 (résumé)
  4. C. Chrea, D. Valentin, C. Sulmont-Rossé, H. Ly Mai, D. Hoang Nguyen, H. Abdi (2004), Culture and odor categorization: agreement between cultures depends upon the odors ; Food Quality and Preference, Volume 15, Issues 7–8, October–December 2004, Pages 669-679 (résumé)
  5. a et b Mark J.T. Sergeant (2010), Chapter Two – Female Perception of Male Body Odor  ; Vitamins & Hormones ; Pheromones, Volume 83, 2010, Pages 25–45 (Résumé)
  6. Pietro Badia, Nancy Wesensten, William Lammers, Joel Culpepper et John Harsh (1990), Responsiveness to olfactory stimuli presented in sleep ; Physiology & Behavior Volume 48, Issue 1, July 1990, Pages 87–90 (résumé)
  7. Robert Soussignan, Benoist Schaal, Luc Marlier, Tao Jiang (1997), Facial and Autonomic Responses to Biological and Artificial Olfactory Stimuli in Human Neonates: Re-Examining Early Hedonic Discrimination of Odors ; Physiology & Behavior Volume 62, Issue 4, October 1997, Pages 745–758 (résumé)
  8. (en) Cristy Ho, Charles Spence, Olfactory facilitation of dual-task performance ; Neuroscience Letters Volume 389, Issue 1, 25 novembre 2005, Pages 35–40 (résumé)
  9. a, b, c, d, e et f Neil Campbell, Jane Reece, Biologie, 7e édition, 2007, (ISBN 978-2-7440-7223-9), p. 1147-1149.
  10. (en) Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding KL, Frisén J, « The age of olfactory bulb neurons in humans », Neuron, vol. 74, no 4,‎ 2012, p. 634-639 (PMID 22632721, lire en ligne) modifier
  11. BE Autriche numéro 146 (6/08/2012), « Les cellules nerveuses du bulbe olfactif ne se renouvellent pas », Ambassade de France en Autriche / ADIT,‎ 6 août 2012 (consulté le 18 juin 2013)
  12. Dale Purves, Neurosciences, De Boeck Supérieur,‎ 2005, p. 57
  13. Voir par exemple les travaux de Richard Axel, de la Columbia University, et Linda Buck, du Fred Hutchinson Cancer Research, qui ont reçu un Nobel pour leur travaux sur les gènes et les récepteurs intervenant dans l'odorat.
  14. Peter H. Raven, Georges B. Johnson, Kenneth A. Mason, Jonathan B. Losos, Susan S. Singer, Biologie, De Boeck Supérieur,‎ 2011, p. 482
  15. L'œeil humain peut percevoir de 2,5 à 7,5 millions de couleurs différente, l'oreille 340 000 sons.
  16. (en) C. Bushdid, M. O. Magnasco, L. B. Vosshall, A. Keller, « Humans Can Discriminate More than 1 Trillion Olfactory Stimuli », Science, vol. 343, no 6177,‎ 21 mars 2014, p. 1370-1372 (DOI 10.1126/science.1249168)
  17. http://www.innovalor.com/odeurs.htm
  18. a, b et c Doug Funk & Shimon Amir (2000), Circadian modulation of Fos responses to odor of the red fox, a rodent predator, in the rat olfactory system ; Brain Research Volume 866, Issues 1–2, 2 June 2000, Pages 262–267 (résumé)
  19. Shimon Amir, Sean Cain, Jonathan Sullivan, Barry Robinson, Jane Stewart (1999), In rats, odor-induced Fos in the olfactory pathways depends on the phase of the circadian clock ; Neuroscience Letters Volume 272, Issue 3, 17 September 1999, Pages 175–178 (résumé)
  20. Ref : Smotherman, W. P. and Robinson, S. R.(1995). Tracing Developmental Trajectories Into the Prenatal Period. In: Fetal Development, J-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, and W. P. Smotherman (Eds.), pp. 15-32. Hillsdale, NJ: Lawrence Erlbaum.
  21. Schaal, B., Orgeur, P., and Rognon, C. (1995). Odor Sensing in the Human Fetus: Anatomical, Functional, and Chemeo-ecological Bases. In: Fetal Development: A Psychobiological Perspective, J-P. Lecanuet, W. P. Fifer, N. A., Krasnegor, and W. P. Smotherman (Eds.) pp. 205-237. Hillsdale, NJ: Lawrence Erlbaum Associates
  22. a, b, c et d NYU Langone Medical Center / New York University School of Medicine (2010-01-13). [ http://www.sciencedaily.com /releases/2010/01/100112171803.htm Loss of smell function may predict early onset of Alzheimer's disease]. ScienceDaily. Consulté 26 septembre 2011.
  23. University of Cincinnati (2007-04-06). http://www.sciencedaily.com /releases/2007/04/070402153233.htm Get A Whiff Of This: Smell Test Could Sniff Out Serious Health Problems]. ScienceDaily. Consulté 2011-09-26
  24. (en) Wikipedia : Hyperosmia
  25. SWEDEN: mercury sniffer dogs clean up Swedish schools (Article du 16 avril 1999, consulté 2010 03 27)
  26. OCDE ; Politiques de l'environnement : quelles combinaisons d'instruments ? ; 2007 ;
  27. 1992 : Réalisation d’une campagne d’évaluation de la gêne due aux odeurs sur le Littoral Calais - Dunkerque : « le nez de Cléopâtre ». Voir Fiche du CERDD, avec le SPPPI Cote d’Opale Flandres

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • André Holley, Éloge de l'odorat, Odile Jacob,‎ 1999, 276 p. (lire en ligne)

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]