Odométrie

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L’odométrie est une technique permettant d'estimer la position d'un véhicule en mouvement. Le terme vient du grec hodos (voyage) et metron (mesure). Cette mesure de bas niveau est présente sur quasiment tous les robots mobiles, grâce à des capteurs embarqués permettant de mesurer le déplacement du robot (de ses roues).

Principe[modifier | modifier le code]

L'odométrie repose sur la mesure individuelle des déplacements des roues pour reconstituer le mouvement global du robot. En partant d'une position initiale connue et en intégrant les déplacements mesurés, on peut ainsi calculer à chaque instant la position courante du véhicule.

Modèle de déplacement[modifier | modifier le code]

Pour calculer le mouvement global du robot à partir des mesures odométriques, il est nécessaire de disposer d'un modèle décrivant le déplacement du robot. L'exemple le plus courant en robotique est celui d'un robot dont le déplacement est contrôlé par le différentiel de vitesse entre les deux roues motrices.

Nous noterons :

  • d_g et d_d les déplacements respectifs des roues gauche et droite
  • v_g et v_d les vitesses respectives des roues gauches et droite
  • x,y,\theta les coordonnées du robot (position et orientation)
  • d le déplacement du robot
  • v la vitesse du robot
  • e l'écart entre les deux roues

Modèle direct[modifier | modifier le code]

Si on suppose que la trajectoire du robot est un cercle de rayon R parcouru à la vitesse angulaire \textstyle\frac{d\theta}{dt} (R>0 si le cercle est parcouru dans le sens trigonométrique), alors on a :

v=R\;\frac{d\theta}{dt}

Dans ce cas, les vitesses des roues sont données par :

\left\{\begin{matrix}
v_g & = & \displaystyle(R-\frac{e}{2})\;\frac{d\theta}{dt} & = & \displaystyle(R-\frac{e}{2})\frac{v}{R}\\
v_d & = & \displaystyle(R+\frac{e}{2})\;\frac{d\theta}{dt} & = & \displaystyle(R+\frac{e}{2})\frac{v}{R}
\end{matrix}\right.

Nous avons donc construit un modèle direct du déplacement du robot (i.e. un modèle permettant de calculer les vitesses v_g et v_d des roues en fonction des paramètres de la trajectoire globale v et R.

Modèle inverse[modifier | modifier le code]

L'odométrie va cependant nécessiter la connaissance du modèle inverse du déplacement du robot : connaissant les mesures odométriques, nous cherchons à retrouver les paramètres de la trajectoire. Nous pouvons supposer qu'à chaque instant et durant un intervalle de temps très court, la trajectoire du robot s'apparente à un cercle. Il nous suffit donc d'inverser le modèle direct précédemment construit pour un cercle, et nous pourrons reconstruire le rayon de courbure local de la trajectoire et la vitesse du robot.

L'inversion du système précédent nous donne :

\left\{\begin{matrix}
v & = & \displaystyle\frac{v_g + v_d}{2} \\
R & = & \displaystyle\frac{e}{2}\,\frac{v_d+v_g}{v_d-v_g}
\end{matrix}\right.

Calcul d'odométrie[modifier | modifier le code]

Nous sommes maintenant en mesure de mettre à jour la position du robot en temps réel :

  • à chaque instant, les mesures odométriques nous donnent les déplacements des roues d_g et d_d depuis l'instant précédent
  • le modèle inverse (dans lequel l'intervalle de temps a été éliminé et les vitesses remplacées par des déplacements) nous permet de calculer le déplacement d du robot et le rayon de courbure instantané R de la trajectoire.
  • on calcule le changement d'orientation d\theta du robot et les coordonnées du centre O du cercle trajectoire:
d\theta = \frac{d}{R}
\left\{\begin{matrix}
x_O & = & x-R\,\cos(\theta)\\
y_O & = & y-R\,\sin(\theta)
\end{matrix}\right.
  • on met à jour la position du robot :
\left\{\begin{matrix}
\theta & \leftarrow & \theta+d\theta \\
x      & \leftarrow & x_O + R\,\cos(\theta) \\
y      & \leftarrow & y_O + R\,\sin(\theta)
\end{matrix}\right.

Liens externes[modifier | modifier le code]