NumPy

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Python
Système d'exploitation Multiplate-forme
Licence licence BSD
Site web www.numpy.org

NumPy est une extension du langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux.

Plus précisément, cette bibliothèque logicielle open source fournit de multiples fonctions permettant notamment de créer directement un tableau depuis un fichier ou au contraire de sauvegarder un tableau dans un fichier, et manipuler des vecteurs, matrices et polynômes.

Utilisée de concert avec Matplotlib (gestion des graphiques), elle devient un outil scientifique parfait pour python.

Exemples[modifier | modifier le code]

Création de tableau[modifier | modifier le code]

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x
array([1, 2, 3])
>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Opérations de base[modifier | modifier le code]

>>> a = np.array([1, 2, 3, 6])
>>> b = np.linspace(0, 2, 4)
>>> c = a - b
>>> c
array([ 1.        ,  1.33333333,  1.66666667,  4.        ])
>>> a**2
array([ 1,  4,  9, 36])

Fonctions universelles[modifier | modifier le code]

>>> a = np.linspace(-np.pi, np.pi, 100) 
>>> b = np.sin(a)
>>> c = np.cos(a)

Algèbre linéaire[modifier | modifier le code]

>>> from numpy.random import rand
>>> from numpy.linalg import solve, inv
>>> a = np.array([[1, 2, 3], [3, 4, 6.7], [5, 9.0, 5]])
>>> a.transpose()
array([[ 1. ,  3. ,  5. ],
       [ 2. ,  4. ,  9. ],
       [ 3. ,  6.7,  5. ]])
>>> inv(a)
array([[-2.27683616,  0.96045198,  0.07909605],
       [ 1.04519774, -0.56497175,  0.1299435 ],
       [ 0.39548023,  0.05649718, -0.11299435]])
>>> b =  array([3, 2, 1])
>>> solve(a, b)  # résout ax = b
array([-4.83050847,  2.13559322,  1.18644068])
>>> c = rand(3, 3)  # crée une matrice 3x3 au hasard
>>> c
array([[  3.98732789,   2.47702609,   4.71167924],
       [  9.24410671,   5.5240412 ,  10.6468792 ],
       [ 10.38136661,   8.44968437,  15.17639591]])
>>> np.dot(a, c)  # multiplication de matrices
array([[  3.98732789,   2.47702609,   4.71167924],
       [  9.24410671,   5.5240412 ,  10.6468792 ],
       [ 10.38136661,   8.44968437,  15.17639591]])

Liens externes[modifier | modifier le code]