Méthane

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 29 décembre 2014 à 00:27 et modifiée en dernier par Matthieu Martin (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Méthane
Identification
Nom UICPA méthane
Synonymes

hydrure de méthyle

No CAS 74-82-8
No ECHA 100.000.739
No CE 200-812-7
PubChem 297
SMILES
InChI
Apparence gaz comprimé ou liquéfié, incolore et inodore[1].
Propriétés chimiques
Formule CH4  [Isomères]
Masse molaire[2] 16,042 5 ± 0,001 1 g/mol
C 74,87 %, H 25,13 %,
Propriétés physiques
fusion −182,47 °C [3]
ébullition −161,52 °C [3]
Solubilité 22 mg·l-1 (eau, 25 °C)[4]
Paramètre de solubilité δ 11,0 MPa1/2 (25 °C)[5]
Masse volumique 422,62 kg·m-3 (−161 °C, liquide)
0,670 9 kg·m-3 (15 °C,1 bar,gaz)[3]
d'auto-inflammation 537 °C[1]
Point d’éclair Gaz Inflammable[1]
Limites d’explosivité dans l’air 4,417 %vol[3]
Pression de vapeur saturante 2 atm (−152,3 °C);

5 atm (−138,3 °C);
10 atm (−124,8 °C);
20 atm (−108,5 °C);
40 atm (−86,3 °C);
4,66×105 mmHg (25 °C)[4]

Point critique 4 600 kPa [7], −82,6 °C [8]
Vitesse du son 1 337 m·s-1 (liquide,−161,5 °C)
450 m·s-1 (gaz,27 °C,1 atm)[9]
Thermochimie
ΔfH0gaz −74,87 kJ·mol-1 [10]
Cp
PCI 803,3 kJ·mol-1 [12]
Propriétés électroniques
1re énergie d'ionisation 12,61 ± 0,01 eV (gaz)[13]
Précautions
SGH[15]
SGH02 : InflammableSGH04 : Gaz sous pression
Danger
H220
SIMDUT[16]
A : Gaz compriméB1 : Gaz inflammable
A, B1,
Transport
   1971   

   1972   
Écotoxicologie
LogP 1,09[1]

Unités du SI et CNTP, sauf indication contraire.

Le méthane est un composé chimique de formule chimique CH4. Il a été découvert et isolé par Alessandro Volta entre 1776 et 1778. Il s'agit du plus simple des hydrocarbures, et plus précisément du premier terme de la famille des alcanes. Il est assez abondant dans le milieu naturel, ce qui en fait un combustible à fort potentiel. La combustion du méthane dans le dioxygène pur produit du dioxyde de carbone CO2 et de l'eau H2O avec une importante libération d'énergie :

CH4 + 2 O2CO2 + 2 H2O : ΔH = −891 kJ mol−1.

Il se présente à l'état gazeux aux conditions normales de température et de pression. Il peut être transporté sous forme gazeuse, généralement par gazoduc, ou à l'état liquéfié par méthaniers, plus rarement par camions.

Les archées dites méthanogènes produisent de façon anaérobie pratiquement tout le méthane gardé dans les terrains sédimentaires. Le méthane produit par la réaction de serpentinisation entre les péridotites et l'eau de mer dans les dorsales océaniques s'échappe normalement et est oxydé dans l'atmosphère.

D'énormes quantités de méthane sont enfouies dans le sous-sol sous forme de gaz naturel. De grandes quantités, difficiles à évaluer, sont également présentes sur le plancher océanique sous forme d'hydrates de méthane, stables à basse température et haute pression. Les volcans de boue, les décharges publiques et la digestion du bétail, notamment des ruminants dégagent du méthane.

Le méthane est naturellement présent dans l'atmosphère terrestre, mais les ajouts anthropiques ont amené son taux à plus que doubler depuis la révolution industrielle, atteignant 1,75 ppm (précisément de 1 748 ppb en 1998[17]). Il tendait à se stabiliser en 2006-2007[18] avant de réaugmenter et de connaitre un nouveau record en 2012 (1,819 ppm, soit + 260 % par rapport au niveau préindustriel[18]).

Sa durée de vie est assez brève — moins de dix ans — dans l'atmosphère, où il est détruit par des radicaux hydroxyle OH-, mais c'est un gaz à effet de serre bien plus puissant que le CO2, responsable, au niveau actuel de sa concentration, de quelques pour-cent de l'effet de serre total à l'œuvre dans notre atmosphère[19]. Ainsi, à titre comparatif, sur un horizon de 100 ans, relâcher une certaine quantité de méthane dans l'atmosphère a un effet sur le réchauffement climatique environ 9 fois plus important que de brûler cette même quantité de méthane en dioxyde de carbone (CO2).

Histoire

Alessandro Volta découvre le méthane en 1776 en étudiant le « gaz inflammable des marais » [20].

C'est à cause du grisou, responsable (encore de nos jours) de nombreuses catastrophes minières, que furent mises au point les lampes de sûreté dans les mines de charbon, et notamment la lampe de Davy.

Jusqu'aux années 1970, l'impact du méthane sur le climat était inconnu. En 1976, il a été démontré que le méthane était un gaz à effet de serre.

Ce n’est qu’avec l'exploration spatiale que l’on a découvert l’omniprésence de ce corps dans l’Univers.

Formation, stockages naturels

C’est le principal constituant du biogaz issu de la fermentation de matières organiques animales ou végétales en l’absence d’oxygène. Il est fabriqué par des archées méthanogènes qui vivent dans des milieux anaérobies c’est-à-dire sans oxygène[21].

Le méthane est ainsi le seul hydrocarbure classique qui peut être obtenu rapidement et facilement grâce à un processus biologique naturel. Nous utilisons principalement du gaz naturel et donc du méthane fossile, mais l’utilisation du méthane renouvelable, aussi appelé biogaz, est en développement : Suède, Allemagne, Danemark, Viêt Nam, Cambodge, Chine, Inde…

Le méthane se dégage naturellement des zones humides peu oxygénées comme les marais et certains sols longuement inondés. Il se forme aussi dans l'estomac et le tube digestif de nombreux animaux (de certains invertébrés aux mammifères). Ce gaz est présent en faible quantité dans les gaz intestinaux humains[22].

Des quantités importantes de méthane sont piégées sous forme d’hydrates de méthane (clathrates) au fond des océans (où leur exploitation est envisagée) et dans les pergélisols. Ces deux réservoirs pourraient jouer un rôle important dans les cycles climatiques, et ils semblent[réf. nécessaire] commencer à perdre une quantité croissante de méthane dans l'atmosphère.

Le débullage de méthane à partir des sédiments marins, sur les lignes de fractures du plancher océanique est considéré comme un indice de risque sismique élevé, voire peut-être comme pouvant annoncer un tremblement de terre (sous réserve de confirmation à la suite des expériences en cours, en mer de Marmara, sur la faille nord-anatolienne en cours au large de la Turquie) [23].

Le méthane issu des planchers océaniques, à une profondeur minimale de 400m, est pratiquement totalement absorbé par des bactéries. L’accident de la plateforme de Deepwater Horizon survenu dans le Golfe du Mexique a libéré une très forte quantité de méthane sur le plancher océanique dont aucune trace ne subsistait après six mois, un temps considéré comme très courts au regard de la quantité de méthane ayant échappé du puits d’extraction endommagé. Le fait que le méthane ait été absorbé par des micro-organismes n’implique pas pour autant que l’incident n’ait pas de conséquence pour l’environnement, en particulier à cause de l’acidification de l’océan qui en résulte[24]

Propriétés physico-chimiques

Aux conditions normales de température et de pression, c'est un gaz incolore et inodore. Plus léger que l'air, le méthane en milieu non confiné s'échappe vers la haute atmosphère et n'a pas la tendance des gaz plus lourds que l'air (propane, butane) à former des nuages explosifs. Le méthane est un combustible qui compose jusqu'à 90 % le gaz naturel. Sa température d'auto-inflammation dans l'air est de 540 °C [25]. La réaction de combustion du méthane s'écrit :

CH4 + 2 O2CO2 + 2 H2O.
  • La combustion d'1 m3 de méthane à 15 °C (gaz naturel) libère une énergie de 9,89 kWh (35,6 MJ)[réf. nécessaire].
  • Le gaz naturel, (constitué à plus de 90 % de méthane) est transporté par navires (méthaniers) à une température de −162 °C et à une pression voisine de la pression atmosphérique. Les réservoirs sont construits sur le principe de la bouteille isotherme et leur capacité peut aller jusqu'à 40 000 ou 50 000 m3 de gaz liquide par réservoir. Un méthanier comportant plusieurs réservoirs, sa cargaison peut actuellement atteindre 154 000 m3 de GNL, Gaz Naturel Liquéfié. Les futurs méthaniers pourront transporter jusqu'à 260 000 m3 de GNL. Le volume du méthane à l'état gazeux est égal à 600 fois son volume à l'état liquide, à pression atmosphérique.
  • Présent à tous les stades de l'industrie pétrolière, mais mal valorisé, il est fréquemment brûlé dans une torchère ; ce comportement contribuant à l'effet de serre, les pétroliers tentent de plus en plus de restreindre ce procédé.

Dans l'Univers

Dans les nuages interstellaires

Du méthane a été retrouvé à l'état de traces dans plusieurs nuages interstellaires.

Sur Titan

Le méthane est présent partout sur Titan, et même à l'état liquide sous forme de lacs, de rivières, et de mers, particulièrement près du pôle nord de l'astre. Sa présence en a été établie dès 1944. Au point que la chaleur dégagée par la sonde Huygens, lors de l'impact du a provoqué un notable dégagement de méthane gazeux.

L'atmosphère de Titan, satellite de Saturne, est principalement constituée d'azote avec une proportion de méthane allant de 1,4 % dans la stratosphère jusqu'à 4,9 % au niveau du sol. Il ne pleuvait pas lorsque la sonde Huygens s'est posée sur Titan, mais l'ESA n'exclut pas que des averses de méthane y soient fréquentes. Simplement, l'aridité du sol absorberait rapidement ces précipitations, à la manière des déserts terrestres.

Sur Mars

L'un des résultats les plus étonnants de la sonde spatiale Mars Reconnaissance Orbiter, en orbite autour de Mars depuis le , provient de l'étude détaillée en 2008 de la région de Nili Fossae, identifiée début 2009 comme source d'importants dégagements de méthane[26]. Le méthane a été détecté dès 2003 dans l'atmosphère de Mars, aussi bien par des sondes telles que Mars Express que depuis la Terre ; ces émissions de CH4 se concentreraient notamment en trois zones particulières de la région de Syrtis Major Planum[27]. Or le méthane est instable dans l'atmosphère martienne, des études récentes suggérant même qu'il soit six cents fois moins stable qu'estimé initialement (on évaluait sa durée de vie moyenne à 300 ans) car le taux de méthane n'a pas le temps de s'uniformiser dans l'atmosphère et demeure concentré autour de ses zones d'émission, ce qui correspondrait à une durée de vie de quelques centaines de jours ; la source de méthane correspondante serait par ailleurs 600 fois plus puissante qu'estimé initialement, émettant ce gaz une soixantaine de jours par année martienne, à la fin de l'été de l'hémisphère nord[28].

Visualisation d'un dégagement de méthane dans l'atmosphère de Mars début 2009, pendant l'été de l'hémisphère nord martien[29].

Les analyses géologiques menées en 2008 par la sonde Mars Reconnaissance Orbiter dans la région de Nili Fossae ont révélé la présence d'argiles ferromagnésiennes (smectites), d'olivine (silicate ferromagnésien (Mg,Fe)2SiO4, détectée dès 2003[30]) et de magnésite (carbonate de magnésium MgCO3)[31], ainsi que de serpentine[32]. La présence simultanée de ces minéraux permet d'expliquer assez simplement la formation de méthane, car, sur Terre, du méthane CH4 se forme en présence de carbonates — tels que le MgCO3 détecté dans la région en 2008 — et d'eau liquide lors du métamorphisme hydrothermal d'oxyde de fer(III) Fe2O3 ou d'olivine (Mg,Fe)2SiO4 en serpentine (Mg,Fe)3Si2O5(OH)4, particulièrement lorsque le taux de magnésium dans l'olivine n'est pas trop élevé et lorsque la pression partielle de dioxyde de carbone CO2 est insuffisante pour conduire à la formation de talc Mg3Si4O10(OH)2 mais aboutit au contraire à la formation de serpentine et de magnétite Fe3O4, comme dans la réaction :

12/x Mg2-xFexSiO4 + 2+(8(2-x)/x) H2O + CO2 → 4(2-x)/x Mg3Si2O5(OH)4 + (8x-4)xSiO2 + 4 Fe3O4 + CH4.

La probabilité de ce type de réactions dans la région de Nili Fossae est renforcée par la nature volcanique de Syrtis Major Planum et par l'étroite corrélation, observée dès 2004, entre le taux d'humidité d'une région et la concentration de méthane dans l'atmosphère[33].

Sur les planètes géantes

On trouve également du méthane sous forme de nuages et de brume sur Uranus et Neptune, de gaz non condensé dans les atmosphères de Jupiter et de Saturne ; ainsi que peut-être sur les exoplanètes Epsilon Eridani c et Fomalhaut b.

Utilisation

Les gisements fossiles de gaz naturel comportent entre 50 et 60 % de méthane, le gaz naturel brut est épuré avant d'être injecté sur le réseau de distribution.
La proportion de méthane présent dans le gaz naturel que nous utilisons est supérieure à 90 % dans la plupart des gaz.

Le méthane « biologique » ou biogénique, ou biogaz, qui est produit par la fermentation anaérobie de matière organique comporte 50 à 80 % de méthane, (60-65 % généralement)

Le biogaz produit dans les décharges pourrait être (bien davantage) récupéré et valorisé sous forme d'électricité, de chaleur ou comme carburant automobile. Pour l'instant, seules quelques expériences isolées (dans des fermes, des déchèteries…) ont vu le jour, spécialement dans les régions les plus froides (nord de l'Allemagne, de la France, Scandinavie…), mais la rentabilité économique de ces installations est loin d'être acquise[réf. nécessaire].

Le méthane est valorisable comme combustible mais d'autres usages en seraient possibles. Par exemple, des chercheurs ont réussi à transformer à température presque ambiante (40 °C) du méthane en un ester (propionate d’éthyle) potentiellement valorisable. Pour ce faire, un carbène (composé très réactif) a été introduit dans une liaison du méthane via un catalyseur organométallique[34].

Biocarburant de troisième génération

Pour produire un méthane de décharge assez pur et pour faire un bon biocarburant de troisième génération, un « digesteur anaérobie » inspiré de la digestion anaérobie à l'œuvre dans la panse des bovins est expérimenté au Canada. Des microorganismes méthanogènes vivant en symbiose avec les vaches savent produire plus de méthane que de CO2, mais ils ont des exigences précises, en température et humidité notamment. La difficulté est de conserver les conditions de vies optimales de ces organismes dans un milieu constitué de déchets, ce qu'on tente ici de faire au moyen d'électrodes spéciales régulant la température du milieu. Ce sont ensuite des fibres creuses constituées d'une membrane perméable qui devraient séparer le CO2 du méthane qui pourra ensuite être brûlé comme source d'énergie, utilisé par la carbochimie ou compressé et stocké[35].

Stockage énergétique

Dans la perspective d'une transition vers des énergies renouvelables, des chercheurs de l'entreprise autrichienne Solar Fuel Technology (Salzbourg), en coopération avec l'Institut Fraunhofer de recherche sur l'énergie éolienne de Leipzig (IWES), le Centre de recherche sur l'énergie solaire et l'hydrogène de Stuttgart (ZSW) et l'université de Linz ont mis au point une solution de stockage de l'énergie sous forme de méthane[36],[37]. L'énergie électrique excédentaire d'origine éolienne ou photovoltaïque est utilisée pour décomposer de l'eau en dihydrogène et dioxygène (électrolyse de l'eau), puis le dihydrogène est utilisé pour méthaniser du dioxyde de carbone (réaction de Sabatier).

L'un des principaux intérêts de ce procédé est d'utiliser les infrastructures (réservoirs et conduites de gaz) existantes, dont la capacité de stockage serait suffisante pour couvrir les besoins de méthane de l'Allemagne pendant plusieurs mois, par exemple pendant [38] une période où le solaire et l'éolien ne peuvent couvrir les besoins énergétiques.

Environnement : contribution à l'effet de serre

Un gaz à effet de serre

Le méthane est un gaz à effet de serre qui influe sur le climat, pris en compte en tant que tel par la directive 2003/87/CE. Il absorbe une partie du rayonnement infrarouge émis par la Terre, et l'empêche ainsi de s'échapper vers l'espace. Ce phénomène contribue au réchauffement de la Terre.

De plus il contribue aussi indirectement à l'effet de serre en diminuant la capacité de l'atmosphère à oxyder d'autres gaz à effet de serre (comme les fréons). Son utilisation comme combustible émet du CO2 à hauteur de 380 Mt/an (les émissions industrielles avoisinent 6 000 Mt/an).

L'influence du méthane sur le climat est moins importante que celle du dioxyde de carbone mais elle est quand même préoccupante. Une molécule de méthane absorbe en moyenne 23 fois plus de rayonnement qu'une molécule de dioxyde de carbone sur une période de 100 ans, son potentiel de réchauffement global (PRG) est donc de 23 ; à échéance 20 ans, son PRG est même de 62. Le méthane est considéré comme le 3e gaz responsable du dérèglement climatique[réf. nécessaire], après le CO2 et les fréons[39].

Méthane et ozone

Le méthane interagit avec l'ozone, différemment dans les hautes et les basses couches de l'atmosphère.
Selon les modélisations tridimensionnelles disponibles en chimie de la troposphère, diminuer les émissions anthropiques de CH4 pourrait être « un puissant levier pour réduire à la fois le réchauffement climatique et la pollution de l'air par l'ozone de fond troposphérique » [40].

Variation historique (depuis l'Empire romain)

Les émissions de méthane provenant des marais, des bovins, des feux de végétation ou des combustibles fossiles ont toutes une signature isotopique spécifique[41].
On sait aujourd’hui finement analyser le méthane piégé dans les glaces. Ces analyses ont récemment (2012) confirmé l'hypothèse posée il y a quelques années par le climatologue William Ruddiman, qui estimait que l'impact de l'humanité sur le climat date d'avant le récent Anthropocène et de bien avant la révolution industrielle.

Selon l'étude isotopique du méthane des glaces antarctiques parue dans la revue Nature en octobre 2012[42], les variations passées du taux de méthane et sa composition démontrent que des feux de végétation probablement anthropiques enrichissent depuis le XVIe siècle au moins le taux atmosphérique de méthane. L'analyse fine de deux carottes de glace du forage glaciaire NEEM1 (Groenland)[43] couvrant environ 2000 ans a été faite avec une précision jamais atteinte en termes de dosage, analyse et résolution temporelle. Elle montre ou confirme qu'entre un siècle avant Jésus Christ et le XIXe siècle, le monde avait déjà connu 3 périodes d'augmentation des taux de méthane (à l'échelle de quelques siècles) et une tendance longue à la décroissance de la signature isotopique 13C du méthane[42]. Selon ces données, les modèles d'équilibre isotopique de l'atmosphère[44] et les données paléoclimatiques de cette période (température, précipitations) ainsi qu'au vu des données de la démographie humaine, les feux de végétation liés à la déforestation, au chauffage, à la cuisson et la métallurgie avaient diminué au moment du déclin de l'Empire romain et de celui de la dynastie Han (Chine), pour réaugmenter durant les grandes déforestations et l'expansion médiévale[42]. L'homme semble être responsable de 20 à 30 % des émissions totales de méthane par les feux de végétation entre un siècle avant Jésus Christ et le XVIe siècle[42].

Variations récentes de teneur de l'air

Le taux de méthane actuel dans l'atmosphère terrestre est d'environ 1 800 ppb, soit 0,00018 %. Il s'est maintenu[45],[46] entre 1780 et 1810 ppb de 2000 à 2010 avec une grande variation suivant la latitude[47]. Dans le passé, le taux de méthane dans l'atmosphère a varié souvent parallèlement à la température[réf. nécessaire]. Ce taux a augmenté d'environ 150 % depuis 1750 et atteint aujourd'hui un taux inégalé[48] dans l'histoire, principalement en raison des activités humaines. Une augmentation des teneurs a été constatée en 2008/2009[49]. Les modélisations informatiques de la cinétique du CH4 dans l'air ont permis de remonter à la source des émissions pour les 20 dernières années de mesures atmosphériques. Selon ces travaux, la réduction des émissions et/ou une utilisation plus efficace du gaz naturel dans l'hémisphère Nord (amélioration de l'étanchéité des tuyaux de gaz, récupération du grisou ou du gaz de décharge pour produire de l'électricité..) ont permis une baisse des émissions dans les années 1990, mais une nette augmentation des émissions provenant de combustibles fossiles dans le nord de l'Asie a ensuite de nouveau été constatée (2006…). Le recul des zones humides, par drainage entre autres, et, dans une moindre mesure, les feux de brousse, expliquent aussi les variations mesurées du CH4 atmosphérique sur 20 ans[50].

Augmentation du taux de méthane atmosphérique, en ppb.
Taux de méthane à la limite supérieure de la troposphère.
Saisonnalité relevée par la NOAA.


Le méthane serait responsable d'environ 20 % du réchauffement moyen enregistré depuis le début de la révolution industrielle.
On estime que sans sa présence, la température moyenne de surface de la Terre serait plus basse de 1,3 °C[réf. nécessaire]. Le calcul du PRG (pouvoir de réchauffement global) du méthane est périodiquement réévalué par le GIEC au vu des connaissances nouvelles.
Ce PRG tend à augmenter[51] (doublement du forçage radiatif additionnel qui lui est attribué entre 2007 et 2013, ce qui le rapproche du CO2 (il est passé de 0,48 à 0,97 W/m2 tous effets confondus et le PRG du CO2 est 1,68 W/m2), les scientifiques montrant qu'il contribue plus que ce que l'on pensait au réchauffement, avec une source nouvelle et en augmentation fore aux États-Unis qui sont est les fuites de méthane des forages et installations de gaz de schiste ou gaz de couche ou encore les émissions du permafrost[52] 22 janvier 2014 - D’après le dernier rapport du GIEC, paru en 2013, le PRG relatif du méthane est estimé à 28. Qu'est-ce que cela signifie exactement ?

Origine des émissions

Globalement, les émissions de méthane vers l’atmosphère sont estimées à 500 Mt/an[réf. nécessaire], dont les trois quarts d’origine anthropique.

Les principales sources (par ordre d'importance quantitative estimée) sont[réf. nécessaire] :

  • La fermentation anaérobie sous l'eau : 32 % des émissions.
    Elles ont surtout lieu dans les zones humides (naturelles ou artificielles avec en particulier les rizières et barrages hydroélectriques qui ont inondé des forêts ou accumulé une importante charge organique. Il peut aussi s'agir d'estuaires devenus dystrophes ou de n'importe quelle zone d'accumulation de pollution organique, décharge par exemple).
    Les marais, les mangroves tropicales et les rizières sont sujets à l’action de bactéries méthanogènes en milieu anaérobie.
    La température agit sur les émissions, qui atteignent leur valeur maximale entre 37 °C et 48 °C, d’où une amplification des émissions en cas de réchauffement. En présence d'une quantité suffisante d'oxygène, l'activité bactérienne elle-même contribue à échauffer le matériau, mais avec émission de CO2.
    L'analyse des gaz piégés il y a 10 000 ans dans les glaces polaires et l'étude du rapport isotopique carbone 13/carbone 12 du carbone de ces molécules de méthane (δ13CH4) ont montré un doublement des taux de CH4 lors de la dernière transition glaciaire-interglaciaire. Ce doublement est dû, à près de 50 %, aux régions marécageuses tropicales, renforcées par les émissions des tourbières boréales favorisées par la transition climatique[53].
Analyse par satellite montrant les concentrations de méthane (parties par million en volume) en surface (en haut) et dans la stratosphère (en bas).
  • Les énergies fossiles : 21 % des émissions.
    Le gaz naturel est composé à 90 % de méthane. Les fuites dans l'atmosphère lors de son extraction, de son transport, de son traitement et de sa distribution pourraient représenter jusqu'à 2 % de la production de gaz naturel, les 3/4 de ces fuites ayant lieu chez le client, après le compteur. Le graphe ci-contre montre également l'importance des pertes lors de la production : on distingue clairement certains champs gaziers de grande taille, entre autres la mer Caspienne et la Sibérie.
    De même, le gaz piégé dans les filons de charbon lors de sa formation (le grisou) est relâché lors de l’extraction du minerai. Si l'on ne veut pas réduire l’utilisation de ces énergies fossiles et sans un investissement massif dans les énergies alternatives, il faut donc rechercher des solutions pour limiter les fuites.
  • Les ruminants : Dans les années 1990 on se rend compte que les élevage bovins contribuent significativement aux émissions mondiales de méthane[54] (environ 16% vers 2010). En France, en 2008 l'élevage était la source (fumier d'étable compris) de 80 % du méthane émis (contre 69 % en 1990, avec un accroissement relatif de 4,6 % en 18 ans). L'élevage lui-même serait responsable de 92 % des émissions nationales de méthane (dont 70 % sont dus à la fermentation gastro-entérique (en) et 30 % aux émanations des lisiers.
    Une seule vache peut émettre 100 à 500 litres de méthane par jour (5 % venant des flatulences et 95% d'éructations liées à la rumination), mais la quantité de CH4 produite varie beaucoup selon l'alimentation de l'animal, avec par exemple une moyenne de 119 kg CH4/vache laitière (VL)/an (variant de 63 à 102 kg) selon Dollé et al. (2006)[55], ou de 117,7 kg en moyenne (de 90 à 163 kg) selon Vermorel et al. (2008)[56], quand la production de lait passe de 3 500 à 11 000 kg/an[57]« les concentrés riches en amidon (orge, blé, maïs) ont un effet dépressif sur la méthanogénèse plus important que les concentrés riches en parois digestibles (pulpe de betterave). Martin et al. (2006) citent une étude qui montre que chez la vache laitière, le remplacement des pulpes de betteraves (70% de la ration) par de l’orge a entraîné une diminution de 34% des pertes d’énergie sous forme de méthane ». Des plantes plus riches en tanin (dont légumineuses telles que le sainfoin, lotier, sulla…) diminuent la dégradation des protéines alimentaires mais aussi la méthanogenèse ruminale.
    Les excréments (fumier d'étable) qui continuent leur décomposition avec une méthanisation plus ou moins anaérobie selon le contexte sont aussi source de méthane.
    Parmi les solutions étudiées[58] : améliorer l'alimentation animale, éviter le stockage des déchets qui ne produisent du méthane qu'à l'abri de l'air, ou mieux récupérer ce méthane et le valoriser énergétiquement. Les féculents comme le soja augmentent la quantité de méthane émise par les bovins quand ils remplacent l'herbe dans l'alimentation industrielle. L’apport dans le rumen de bactéries acétogènes ou de capables d'oxyder le méthane), ou l'apport de lipides alimentaires riches en acides gras polyinsaturés dans la ration des ruminants est une piste prometteuse. Des essais menés sur vaches laitières au centre INRA de Clermont ont montré qu'un apport de 6 % de lipides issus de la graine de lin a diminué la production de méthane des animaux de 27 à 37 % [59]. Il existe aussi des bactéries méthanotrophes, mais leur rôle dans les écosystèmes est encore mal connu.
  • Les déchets humains : 12 % des émissions.
    Les décharges fermentent et émettent de grandes quantité de méthane ; ce gaz pourrait être réutilisé comme source d’énergie[60].
  • La biomasse : 10 % des émissions.
    Le méthane émis provient surtout de l'oxydation incomplète des végétaux, lors de certains processus de décomposition organique naturelle (comme les feuilles mortes des sous-bois accumulées sous l'eau, fermentation de vases riches en matière organique). Certaines espèces (Termites) peuvent produire des quantités significatives de méthane.
  • Les sédiments et océans : 4 % des émissions, mais qui pourrait fortement augmenter.
    Les hydrates contenant du méthane (clathrates) pourraient émettre du gaz en cas de perturbation de la température océanique et/ou du dégel de certains sols riches de la toundra sibérienne et canadienne, mais ces émissions sont limitées actuellement.
    Toutefois, une augmentation de température entraine une augmentation de l'émission de CH4 par les clathrates. Cette source pourrait donc constituer une véritable bombe à retardement climatique en cas de réchauffement des fonds océaniques.
  • Les pergélisols : ils contiennent du méthane qu'ils libèrent en fondant quand le climat se réchauffe. Dans les années 2000, une étude internationale[61] (2003 - 2008) dans les eaux du plateau arctique de Sibérie orientale (plus de 2 millions de km2) a montré que les pergélisols immergés perdaient des quantités significatives de méthane, plus et plus rapidement qu'il n'était prévu par les modèles existants. Sur les sites étudiés durant ces 5 ans, plus de 50 % des eaux de surface et plus de 80 % des eaux profondes présentaient un taux de méthane environ huit fois supérieur à la normale[62]. Le taux actuel moyen de CH4 en Arctique est d'environ 1,85 ppm, soit la plus élevée depuis 400 000 ans alerte Natalia Chakhova[62]. Ce taux est encore plus élevé au-dessus du plateau arctique de Sibérie orientale et N Chakhova parle de signes d'instabilité dans le permafrost immergé "S'il continue à se déstabiliser, les émissions de méthane (…) seront beaucoup plus importantes" [62].

Les variations futures de ces émissions sont incertaines, mais on prévoit une augmentation des apports de l’énergie fossile, des déchets, des sources agricoles et marines du fait du développement de la population mondiale, de l’industrialisation de certains pays et de la demande croissante en énergie, ainsi que du réchauffement climatique. Mais, comme indiqué plus haut, le fait est, en contradiction avec ces « prévisions », que la concentration du méthane n'augmente plus.

Puits de méthane

Ils sont encore mal cernés, mais la contribution du méthane à certains réseaux trophique, et certains mécanismes de dégradation du méthane dans l'eau ou l'air pourraient avoir été sous-estimée. On sait aujourd’hui que :

  • Les différents mécanismes d’élimination du méthane atmosphérique retirent environ 515 Mt/an.
    • Le principal puits à CH4 est le radical hydroxyle OH. contenu dans l’atmosphère, qui contribue à 90 % de la disparition de CH4. Le radical OH, agent oxydant des principaux polluants de l’atmosphère (CH4, CO, NOx, composés organiques), provient de la dissociation photochimique de O3 et de H2O. La teneur en radical hydroxyle est donc influencée par la concentration atmosphérique en CH4 mais aussi par celle de ses produits, dont CO. De même, divers mécanismes affectent la teneur en OH. :
    • l’augmentation de concentration urbaine en NOx engendre plus de formation d’O3 et donc plus de dissociation en OH ;
    • la chute de la concentration d’O3 stratosphérique induit plus de rayonnement UV atteignant la troposphère et donc plus de dissociation d’O3 troposphérique ;
    • l’augmentation de la vapeur d’eau résultant de l’augmentation de la température moyenne produit plus de nuages bloquant les flux de protons, effet réduisant la formation d’OH, et plus de vapeur d’eau, réactif de formation d’OH.
      On a constaté que depuis 1750, le niveau d’OH a diminué d’environ 20 % du fait de l’augmentation en CO et CH4, et est aujourd’hui stable. D’ici 2050, ce niveau devrait encore diminuer de 25 %, ce qui aura un impact important sur les teneurs en éléments traces gazeux. Les 10 % restants sont dus à l’oxydation du méthane en terrain sec par des bactéries méthanotrophes qui l’utilisent comme source de carbone, ainsi que par son transfert vers la stratosphère.
  • Dans le sol, dans certaines nappes, dans les sédiments marins ou dans les zones humides vivent des bactéries qui consomment du méthane. Elles sont localement à l'origine d'un réseau trophique (pélagique) et d'un « puits biologique » de méthane importants, en mer mais aussi dans certains lacs, notamment en hiver où ces bactéries deviennent une source alimentaire plus importante pour le zooplancton, ce qui a été démontré par des analyses isotopiques[63], par exemple en alimentant certaines larves de chironomes (phénomène observé à la suite de la découverte inattendue de larves de chironomidae dont l'organismes était anormalement appauvri en 13C (toujours dans des lacs eutrophes et pauvres en oxygène)[64].
  • Le méthane est souvent associés à des HAP toxiques. Certaines des bactéries méthanotrophes sont mobiles et on a montré qu'elles pouvaient améliorer le transport des HAP dans le sous-sol. Cette qualité peut être utilisée pour épurer une nappe polluée par les HAP[65], mais peut aussi expliquer la pollution de nappes ou certaines distribution ou dispersion de HAP[66].

L'évolution de la concentration de l'air en méthane semble marquer le pas[67] (2007) ; cela pourrait s'expliquer par une destruction accélérée de molécules d'ozone O3, catalysée par des radicaux NO. en plus grande quantité[68],[69].

Réduire les émissions de méthane

Il existe des moyens de diminuer les émissions de méthane pour diminuer son action sur l'effet de serre :

  • capter le méthane, ou biogaz, émis au niveau des décharges d'ordures ou stations d'épuration et le brûler (la combustion forme du CO2 qui a un effet de serre moins important). Cela permettrait de remplacer en partie d'autres énergies fossiles au lieu de le brûler en torchère comme c'est souvent le cas actuellement.
  • capter et utiliser le méthane, ou biogaz, produit au niveau des systèmes de stockage des effluents d'élevages ; récupérer le méthane émis lors de l'exploitation minière et après celle-ci.
  • développer une riziculture moins productrice de méthane, diminuer les taux de fertilisants, lutter contre la turbidité des eaux et la production de sédiments méthanogènes, et donc en amont contre l'érosion, la régression et dégradation des sols.

Notes et références

  1. a b c et d METHANE, Fiches internationales de sécurité chimique
  2. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  3. a b c et d Entrée « Methane » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 26 mai 2009 (JavaScript nécessaire)
  4. a et b « METHANE », sur Hazardous Substances Data Bank
  5. (en) James E. Mark, Physical Properties of Polymer Handbook, Springer, , 2e éd., 1076 p. (ISBN 0387690026, lire en ligne), p. 294
  6. a et b (en) Robert H. Perry et Donald W. Green, Perry's Chemical Engineers' Handbook, USA, McGraw-Hill, , 7e éd., 2400 p. (ISBN 0-07-049841-5), p. 2-50
  7. (en) Iwona Owczarek et Krystyna Blazej, « Recommended Critical Pressures. Part I. Aliphatic Hydrocarbons », J. Phys. Chem. Ref. Data, vol. 35, no 4,‎ , p. 1461 (DOI 10.1063/1.2201061)
  8. (en) Iwona Owczarek et Krystyna Blazej, « Recommended Critical Temperatures. Part I. Aliphatic Hydrocarbons », J. Phys. Chem. Ref. Data, vol. 32, no 4,‎ , p. 1411 (DOI 10.1063/1.1556431)
  9. (en) William M. Haynes, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press/Taylor & Francis, , 91e éd., 2610 p. (ISBN 9781439820773, présentation en ligne), p. 14-40
  10. (en) Irvin Glassman, Richard A. Yetter, Combustion, Elsevier, , 4e éd., 773 p. (ISBN 978-0-12-088573-2), p. 6
  11. (en) Carl L. Yaws, Handbook of Thermodynamic Diagrams, vol. 1, 2 et 3, Huston, Texas, Gulf Pub. Co., (ISBN 0-88415-857-8, 978-0-88415-858-5 et 978-0-88415-859-2)
  12. Magalie ROY-AUBERGER, Pierre MARION, Nicolas BOUDET, Gazéification du charbon, ed. Techniques de l'Ingénieur, Référence J5200, 10 Dec 2009, p. 4
  13. (en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press/Taylor & Francis, , 89e éd., 2736 p. (ISBN 9781420066791, présentation en ligne), p. 10-205
  14. « méthane », sur ESIS, consulté le 15 février 2009
  15. Numéro index 601-001-00-4 dans le tableau 3.1 de l'annexe VI du règlement CE N° 1272/2008 (16 décembre 2008)
  16. « Méthane » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  17. (en) United Nations Environment Programme (UNEP) GRID-Arendal – 2003 Climate Change 2001: Working Group I: The Scientific Basis. 4.2 Trace Gases: Current Observations, Trends, and Budgets – 4.2.1 Non-CO2 Kyoto Gases – 4.2.1.1 Methane (CH4).
  18. a et b Nouveaux records pour les concentrations de gaz à effet de serre dans l’atmosphère , Communiqué OMM no 980]
  19. (en) J. T. Kiehl et Kevin E. Trenberth, « Earth’s Annual Global Mean Energy Budget », Bull. Am. Meteorol. Soc., vol. 78, no 2,‎ , p. 197-208 (DOI 10.1175/2008BAMS2634.1, lire en ligne)
  20. Biographie | http://www.cartage.org.lb/en/themes/biographies/MainBiographies/V/Volta/1.html
  21. Biogaz issus de déchets alimentaires pour cogénération / CHP
  22. (en) F. Suarez, J. Furne, J. Springfield et M Levitt, « Insights into human colonic physiology obtained from the study of flatus composition », Am J Physiol, vol. 272 (5 Pt 1),‎ , G1028–33.
  23. Présentation du programme MARMESONET par IFREMER
  24. documentaire « Méthane, rêve ou cauchemar », diffusé le vendredi 5 décembre 2014, sur Arté
  25. Température d'auto-inflammation du méthane dans l'air
  26. (en) NASA Explores the Red Planet – 15 janvier 2009 Martian Methane Reveals the Red Planet is not a Dead Planet.
  27. (en) Michael J. Mumma, Geronimo L. Villanueva, Robert E. Novak, Tilak Hewagama, Boncho P. Bonev, Michael A. DiSanti, Avi M. Mandell, et Michael D. Smith, « Strong Release of Methane on Mars in Northern Summer 2003 », Science, vol. 323, no 5917,‎ , p. 1041-1045 (ISSN 0036-8075, DOI 10.1126/science.1165243, lire en ligne)
  28. (en) Franck Lefèvre et François Forget, « Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics », Nature, vol. 40,‎ , p. 720-723 (ISSN 0028-0836, lire en ligne)
    DOI 10.1038/nature08228
  29. (en) NASA Explores the Red Planet – 15 janvier 2009 Mars Methane Press Conference - Media Page.
  30. (en) Todd M. Hoefen, Roger N. Clark, Joshua L. Bandfield, Michael D. Smith, John C. Pearl et Philip R. Christensen, « Discovery of Olivine in the Nili Fossae Region of Mars », Science, vol. 203, no 5645,‎ , p. 627-630 (ISSN 0036-8075, lire en ligne)
    DOI 10.1126/science.1089647
  31. (en) NASA Mars Reconnaissance Orbiter – 18 décembre 2008 Mineral Spectra from Nili Fossae, révélant la présence d'argiles riches en fer et en magnésium, d'olivine et de carbonate de magnésium.
  32. (en) 40th Lunar and Planetary Science Conference – 2009 B. L. Ehlmann, J. F. Mustard et S.L. Murchie, Detection of serpentine on Mars by MRO-CRISM and possible relationship with olivine and magnesium carbonate in Nili Fossae.
  33. (en) ESA News – 20 septembre 2004 Water and methane maps overlap on Mars: a new clue?
  34. Brève d’Actualité Pour la science, no 405, juillet 2011, page 7 (Brève non bourcée)
  35. Brève avec Interview d'Edith Labelle, de l'Institut de technologie des procédés chimiques et de l'environnement du CNRC par nrc-cnrc. 2010-05-19, consulté 2010/07/14
  36. Communiqué sur le site de veille technologique de l'ADIT
  37. Communiqué sur le site de l'entreprise Fraunhofer (en allemand)
  38. Specht et al. Storing bioenergy and renewable electricity in the natural gas grid p. 70 (en anglais)
  39. Benjamin Dessus, Hervé Le Treut et Bernard Laponche, « Effet de serre, n'oublions pas le méthane » dans La Recherche (ISSN 0029-5671) no 417 (mars 2008) [lire en ligne (page consultée le 25 juillet 2008)]
  40. Fiore, A. M., D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes, and C. Jang (2002), Linking ozone pollution and climate change: The case for controlling methane, Geophys. Res. Lett., 29(19), 1919, doi:10.1029/2002GL015601 (Résumé)
  41. Communiqué : Recherche, Du méthane émis par les activités humaines depuis l'Empire romain, le 4 octobre 2012
  42. a b c et d C.J. Sapart, G. Monteil, M. Prokopiou, R.S.W. Van de Wal, J.O. Kaplan, P. Sperlich, K.M. Krumhardt, C. Van der Veen, S. Houweling, M.C. Krol, T. Blunier, T. Sowers, P. Martinerie, E. Witrant, D. Dahl-Jensen et T. Röckmann, Natural and anthropogenic variations in methane sources during the past two millennia Nature le 4 octobre 2012
  43. Présentation officielle du forage glaciaire NEEM, Groenland (2 537 mètres de forage atteints en juillet 2010)
  44. LGGE-GIPSA-lab, Grenoble-INP modèle numérique LGGE-GIPSA
  45. Concentration du méthane mesurée à Mauna Loa (Hawaï)
  46. Site du CSIRO (graphique montrant une stabilisation du CH4 atmosphérique (à l'époque non expliquée) de 2000 à 2003
  47. Évolution du taux de méthane atmosphérique
  48. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm-fr.pdf
  49. Bulletin ADIT pour l'Australie numéro 61 (2009 01 15) - Ambassade de France en Australie / ADIT, reprenant une information du CSIRO
  50. Communiqué (daté de 2006) du CSIRO intitulé "Explaining the methane mystery", Reference: 06/188
  51. Carbone 4 (2014) Le PRG du méthane s’enflamme : la contribution à l’effet de serre du CH4 se fait de plus en plus sentir… 2014-01-22
  52. (2013) Des résultats inquiétants sur le méthane, dans le dernier rapport du GIEC, 2013-11-07
  53. Nature, avril 2008
  54. Sauvant, D. (1992). La production de méthane dans la biosphère : le rôle des animaux d’élevage. Le Courrier de l’Environnement, 18, 65-70.
  55. Dollé J.B., Robin P., (2006) : Émissions de gaz à e ffet de serre en bâtiment d’élevage bovin. In Four rages 186, p. 205
  56. Vermorel M., Jouany J.P., Eugène M., Sauvant D., Noblet J., Dourmad J.Y., (200 8) : Évaluation quantitative des émissions de méthane entérique par les animaux d'élevage en 2007 en France. INRA Pro duction Animale 21, p. 403-418
  57. CIVAM de Bretagne (2010) Synthèse bibliographique 2010 – Plan d’action Agriculture Durable des CIVAM de Bretagne (PDF, 6 pages)
  58. Martin C., Morgavi D., Doreau M., Jouany J.P., (2006) Comment réduire la production de méthane chez les ruminants ? In Fourrages 187, p. 283-300
  59. Journal of Animal Science, 2007
  60. AFP. Des bus roulent déjà à Stockholm, et en essai à Oslo et Lille.
  61. étude dirigée par Natalia Chakhova et Igor Semiletov, Université de Fairbanks en Alaska
  62. a b et c http://lci.tf1.fr/science/environnement/2010-03/climat-la-menace-venue-du-fond-des-oceans-5758974.html TF1, rubrique Science/Environnement], mars 2010, consulté 2010 04 29
  63. Bastviken, D., Ejlertsson, J., Sundh, I., & Tranvik, L. (2003), Methane as a source of carbon and energy for lake pelagic food webs. Ecology, 84(4), 969-981 (http://www.esajournals.org/doi/abs/10.1890/0012-9658%282003%29084%5B0969:MAASOC%5D2.0.CO%3B2 résumé]).
  64. Roger I. Jones, Clare E. Carter, Andrew Kelly, Susan Ward, David J. Kelly, Jonathan Grey (2008), Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae Ecology Volume 89, no 3 (mars 2008) p. 857-864 ; Doi:http://dx.doi.org/10.1890/06-2010.1 ([keyword%3A+%22methanotrophic+bacteria%22&searchHistoryKey= résumé])
  65. Jenkins, Michael B.; Lion, Leonard W. Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media. Applied and Environmental Microbiology. October 1993; 59 (10):3306-3313. ISSN: 0099-2240. (résumé et lien)
  66. Jenkins MB, Chen JH, Kadner DJ, Lion LW., Methanotrophic Bacteria and Facilitated Transport of Pollutants in Aquifer Material ; Applied and Environmental Microbiology. 1994 Oct; 60(10)3491-3498
  67. Évolution de la concentration de méthane dans l'atmosphère
  68. Réactivité du méthane et de l'ozone en haute atmosphère
  69. Inversion des sources et puits de gaz dans l'atmospgère

Voir aussi

Articles connexes

Bibliographie