Méthode de Laplace

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, la méthode de Laplace, due à Pierre-Simon de Laplace, est une méthode pour l'évaluation numérique d'intégrales de la forme :

\int_a^b\! e^{M f(x)}\, dx\,

f est une fonction deux fois dérivable, M est un grand nombre réel et les bornes a et b peuvent éventuellement être infinies.

Principe de la méthode[modifier | modifier le code]

Pour M>0, si l'on suppose que la fonction f admet un unique maximum au point x_0 alors pour M grand seuls les points au voisinage de x_0 contribuent de façon significative à l'intégrale :

\int_a^b\! e^{M f(x)}dx. \,

Si M est négatif en considérant -M et -f on peut se ramener à considérer les maximums de -f donc les minimums de f

Méthode de Laplace, cas général[modifier | modifier le code]

Pour appliquer la méthode de Laplace un certain nombre de conditions sont requises. x_0 ne doit pas être l'une des bornes de l'intégrale et f(x) ne peut s'approcher de la valeur f(x_0) qu'au voisinage de x_0.

Par application du théorème de Taylor, au voisinage de x_0, f(x) s'écrit :

f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{1}{2} f''(x_0)(x-x_0)^2 + O\left( (x-x_0)^3 \right).

Puisque f admet un maximum en x_0, qui n'est pas l'une des bornes de l'intégrale, f\, '(x_0)=0 et f\, ''(x_0)<0, on a alors dans un voisinage de x_0 :

 f(x) \approx f(x_0) - \frac{1}{2} |f''(x_0)| (x-x_0)^2

Et pour l'intégrale :

\int_a^b\! e^{M f(x)}\, dx\approx e^{M f(x_0)}\int_a^b\! e^{-M|f''(x_0)| (x-x_0)^2/2}dx

La deuxième intégrale peut être estimée à l'aide d'une intégrale de Gauss en remplaçant les bornes a et b par −∞ et +∞ et l'on a alors:

\int_a^b\! e^{M f(x)}\, dx\approx \sqrt{\frac{2\pi}{M|f''(x_0)|}}e^{M f(x_0)}  \mbox { quand } M\to\infty. \,

Le remplacement des bornes par −∞ et +∞ est numériquement valide car, quel que soit k \in \N , \, e^{-M|f''(x_0)| (x-x_0)^2/2} est un o\left((x-x_0)^{-k}\right)

Les deux conditions demandées pour effectuer cette méthode ne sont pas nécessairement requises et il existe des généralisations pour le cas où x_0 est l'une des bornes en utilisant un développement au premier ordre autour de x_0 ainsi que par découpage d'intégrale pour le cas où deux, ou un nombre fini, de maximums locaux de f auraient des valeurs proches. La méthode du point col permet également une généralisation pour

I(\lambda) = \int_\mathcal{C} f(z) e^{\lambda g(z)} \, dz\,

Exemple : formule de Stirling[modifier | modifier le code]

La méthode de Laplace peut être employée pour démontrer la formule de Stirling :

Pour N grand :N!\approx \sqrt{2\pi N} N^N e^{-N}\,

Par définition de la fonction Gamma, on a

N! = \Gamma(N+1)=\int_0^{\infty} e^{-x} x^N dx. \,

Avec un changement de variable x = N z \, on obtient :

N! \, = \int_0^{\infty} e^{-N z} \left(N z \right)^N N dz \,
= N^{N+1}\int_0^{\infty}e^{-N z} z^N dz \,
= N^{N+1}\int_0^{\infty}e^{-N z} e^{N\ln z} dz \,
= N^{N+1}\int_0^{\infty}e^{N(\ln z-z)} dz. \,

En considérant la fonction:

f \left( z \right) = \ln{z}-z

f est deux fois dérivable :

f'(z) = \frac{1}{z}-1\,,
f''(z) = -\frac{1}{z^2}.\,

f est maximum en z=1 et sa dérivée seconde vaut -1 en 1, on a alors avec la méthode de Laplace:

N! \approx N^{N+1}\sqrt{\frac{2\pi}{N}} e^{-N}=\sqrt{2\pi N} N^N e^{-N}.\,

Références[modifier | modifier le code]

  • J. Dieudonné, Calcul infinitésimal [détail des éditions], chap. IV, §2
  • P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2), v.137 (1993), no. 2, 295–368
  • A. Erdelyi, Asymptotic Expansions, Dover, 1956


Articles connexes[modifier | modifier le code]