Méthode de Badal

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La méthode de Badal est une méthode focométrique de détermination expérimentale de la focale d'une lentille divergente.

Principe[modifier | modifier le code]

On considère une lentille mince divergente de focale f' inconnue, de centre O, de foyers image F' et objet F.

Pour déterminer cette focale f', on va faire deux montages successifs.

Schéma animé sur la méthode de Badal

Premier montage: sans la lentille divergente[modifier | modifier le code]

On utilise deux lentilles convergentes L_1 et L_2 de foyers objets respectifs F_1 et F_2, et de foyers images respectifs F_1' et F_2'.

On met un objet A sur l'axe optique au foyer objet F_1 de la première lentille L_1. Son image se trouve en A'=F_2', le foyer image de L_2:

A=F_1 \longrightarrow  \infty \longrightarrow  A'=F_2'.

Second montage: avec la lentille divergente[modifier | modifier le code]

On intercale entre les deux lentilles convergentes la lentille divergente L de focale inconnue au foyer objet F_2 de L_2.

La nouvelle image de A se trouve en A'':

A=F_1 \longrightarrow  \infty \longrightarrow  F' \longrightarrow  A''.

Détermination de la focale de la lentille divergente[modifier | modifier le code]

Pour déterminer la focale inconnue f' de la lentille divergente, il suffit ensuite de mesurer la distance {A'A''} entre les deux images successives, et de se souvenir de la focale de la seconde lentille convergente (f'_2=0_2A'), en utilisant la relation:

f'=\frac{{-f'_2}^2}{\overline{A'A''}}

Explication[modifier | modifier le code]

Formation de l'image par la seconde lentille convergente[modifier | modifier le code]

Dans le montage contenant la lentille divergente, l'image de A par L_1 se trouve à l'infini, qui a lui même comme image F' par la lentille divergente.

Si l'on se restreint à la lentille L_2, F' est l'objet et A'' l'image:

F' \longrightarrow  A''.

Schéma explicatif sur la conjugaison par la seconde lentille convergente dans la méthode de Badal

Formules de conjugaison de Newton[modifier | modifier le code]

Les formules de conjugaison de Newton donnent une relation entre les positions sur l'axe optique d'un objet B et de son image B' par rapport aux foyers F_2 et F'_2 de la lentille L_2. Elles sont exprimées avec des distances algébriques.

Soit B un point de l'axe optique et B' son image par la lentille L_2:

{\overline{F'_2B'}}. {\overline{F_2B}}=-{f'_2}^2

Cette formule donne dans notre cas (B=F' et B'=A''): {\overline{F'_2A''}}. {\overline{F_2F'}}=-{f'_2}^2.

Or F'_2=A', la première position de l'image, et \overline{F_2F'}=f', la focale inconnue.

Aussi, {\overline{A'A''}}. f'=-{f'_2}^2, qui devient:

f'=-\frac{{f'_2}^2}{A'A''}.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]