Méthode Condorcet avec rangement des paires par ordre décroissant

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La méthode Condorcet avec rangement des paires par ordre décroissant est un système de vote qui permet de résoudre certains conflits de la méthode Condorcet. La méthode initialement proposée par Condorcet est développée par Nicolaus Tideman[1].

Principe[modifier | modifier le code]

Chaque électeur range les candidats par ordre de préférence. Comme dans toute méthode Condorcet, toutes les confrontations par paires sont organisées. On établit alors un graphe orienté pondéré :

  • les sommets sont les candidats ;
  • entre chaque paire de candidats (X, Y) on crée un arc orienté de X vers Y auquel on donne la valeur n - p (n : nombre de victoires de X sur Y, p : nombre de défaites).
  • on classe chaque arc par poids décroissant, selon un ordre strict (sans ex-aequo) ; pour cela, si nécessaire, refaire la pondération (par exemple : à n - p égal, donner un poids un peu supérieur à l'arc pour lequel p est plus faible ; d'autre variantes sont possibles et celle-ci n'est pas toujours suffisante).

Puis on parcourt le graphe, par ordre décroissant du poids attribué, en recherchant systématiquement les cycles, et en "confirmant" les arcs qui n'en créent pas (à l'inverse, on élimine les arcs qui créent un cycle avec les arcs déjà confirmés). Au terme des opérations on obtient un graphe sans cycles. Le gagnant est le sommet vers lequel n'arrive aucune flèche (c'est-à-dire : qui gagne tous les duels "confirmés").

Pour cela, il aura fallu parcourir, au maximum et pour N candidats, N(N-1)/2 arcs.

Exemple[modifier | modifier le code]

45 votants; 5 candidats:

5 ACBED
5 ADECB
8 BEDAC
3 CABED
7 CAEBD
2 CBADE
7 DCEBA
8 EBADC

On effectue les confrontations par paires (méthode Condorcet)

  d[*,A] d[*,B] d[*,C] d[*,D] d[*,E]
d[A,*]   20 26 30 22
d[B,*] 25   16 33 18
d[C,*] 19 29   17 24
d[D,*] 15 12 28   14
d[E,*] 23 27 21 31  
Matrice des duels entre candidats

On donne leur poids et leur orientations aux arcs (A bat B 20 fois, alors que B bat A 25 fois : cela donne un arc orienté de B vers A et de poids 25-20=5)

  d[*,A] d[*,B] d[*,C] d[*,D] d[*,E]
d[A,*]     7 15
d[B,*] 5     21  
d[C,*]   13     3
d[D,*]     11    
d[E,*] 1 9   17  
Matrice des arcs entre candidats

On constitue le graphe orienté des duels en classant les 10 arcs restants par ordre d'examen, du premier ( BD, dont le poids est 21) au dernier ( EA, dont le poids est 1) : (BD), (ED), (AD), (CB), (DC), (EB), (AC), (BA), (CE), (AE)

Rankedpairs1.png

Les arcs (BD), (ED), (AD) , (CB) sont confirmés car ils ne construisent pas de cycle, mais l'arc (DC) doit être supprimé car il créerait le cycle (BDCB)

Rankedpairs2.png

Puis les arcs (EB) et (AC) sont confirmés (en bleu) mais l'arc (BA) doit être supprimé (mis en rouge) car il créerait le cycle (ACBA)

Rankedpairs3.png

Enfin l'arc (CE) est conservé et l'arc (AE) est supprimé.

Rankedpairs4.png

Le graphe orienté donne alors pour gagnant le candidat A, La méthode Schulze et la méthode Black aurait donné le candidat E.

Critères respectés[modifier | modifier le code]

Article détaillé : Critères de systèmes de vote.

Voir aussi[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. Nicolaus Tideman (1943 - ), professeur d'économie, USA

Lien interne[modifier | modifier le code]