Invariance d'échelle

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Le processus de Wiener est invariant d'échelle.

Il y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système.

Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction \Phi telle que pour tout x et y :

\frac{g(x)}{g(y)}=\phi\left(\frac{x}{y}\right)

Alors, il existe une constante C et un exposant \gamma, tels que :

g(x)=Cx^\gamma.

En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.

Cosmologie[modifier | modifier le code]

Dans la cosmologie physique, le spectre de puissance de la distribution spatiale du fond diffus cosmologique est près d'être une fonction invariante d'échelle. Bien que dans les mathématiques, cela signifie que le spectre est une loi de puissance, dans la cosmologie le terme "invariance d'échelle" indique que l'amplitude, P (k), des fluctuations primordiales de densité en fonction du nombre d'onde, « k », est à peu près constante, c'est-à-dire un spectre plat. Ce élément de la chronologie du Modèle standard de la cosmologie est compatible avec la proposition de l'inflation cosmique.

Voir aussi[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  • Zinn-Justin, Jean; Quantum Field Theory and Critical Phenomena, Oxford University Press (2002).
  • P. DiFrancesco, P. Mathieu, D. Senechal; Conformal Field Theory, Springer-Verlag (1997)
  • G. Mussardo; Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics, Oxford University Press (2010)