Indice de Geary

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L’indice de Geary ou C de Geary, créé par Roy C. Geary[1], est une mesure de l'autocorrélation spatiale. Comme l'autocorrélation, l'autocorrélation spatiale exprime la corrélation des observations adjacentes d'un même phénomène. Elle concerne les trois dimensions spatiales. Cependant, l'autocorrélation peut aussi s'exprimer dans la proximité temporelle.

Définition[modifier | modifier le code]

L'indice C de Geary est défini par :  C = \frac{(N-1) \sum_{i} \sum_{j} w_{ij} (X_i-X_j)^2}{2W \sum_{i}(X_i-\bar X)^2}

N est le nombre de mesures spatiales indexées par i et j ; X est la variable des mesures du phénomène auquel on s’intéresse; est la moyenne des mesures de X ; (wi,j) est la matrice des poids spatiaux ; et W est la somme de tous les wi,j.

La valeur de l'indice de Geary s'étend de 0 à 2. 1 signifiant qu'aucune auto-corrélation spatiale n'est présente dans les mesures effectuées. Une valeur plus petite (resp. plus grande) que 1 signifie une auto-corrélation spatiale positive (resp. négative).

L'indice C de Geary est lié à l'inverse de l'Indice I de Moran. Celui-ci est une mesure globale de l'auto-corrélation spatiale, tandis que l'indice C de Geary est plus sensible à l'auto-corrélation spatiale locale.

L'indice C de Geary est aussi connu sous le nom de ratio de Geary, ratio de contiguïté de Geary, ou indice de Geary.

Variogramme[modifier | modifier le code]

L'indice de Geary est lié au variogramme expérimental γ̂ par la relation: C\left(h\right)=\frac{\hat\gamma\left(h\right)}{{s_{n-1}}^2}sn−12 = (n−1)−1∑(ziz)2

Notes et références[modifier | modifier le code]

Notes[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Geary's C » (voir la liste des auteurs)


Références[modifier | modifier le code]

  1. Geary, R. C., « The Contiguity Ratio and Statistical Mapping », The Incorporated Statistician, The Incorporated Statistician, vol. 5, no 3,‎ 1954, p. 115–145 (DOI 10.2307/2986645, JSTOR 2986645)

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]