Groupe diédral

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Symétrie bidimensionnelle D4

En mathématiques, le groupe diédral noté Dn, pour n ≥ 2, ou parfois D2n, est un groupe d'ordre 2n qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Le groupe D1 est le groupe cyclique d'ordre 2, noté C2 ; le groupe D2 est le groupe de Klein à quatre éléments. Parmi les groupes diédraux Dn, ce sont les deux seuls à être abéliens.

Présentation et définitions équivalentes[modifier | modifier le code]

Le groupe Dn peut être défini par la suite exacte scindée suivante :

1\to C_n\to D_n\to C_2\to 1

Cn est un groupe cyclique d'ordre n, C2 est cyclique d'ordre 2, la section étant donnée par l'action d'un relevé σ du générateur de C2, sur un générateur τ du groupe cyclique d'ordre n :

\sigma\tau\sigma^{-1}=\tau^{-1}.

Ce groupe est donc produit semi-direct de Cn par C2 suivant le morphisme ψ, où l'unité de C2 agit sur Cn comme l'application identique et l'autre élément de C2 agit sur Cn par inversion. Explicitement :

 \text {si }\; C_n=\langle \tau \rangle,\; C_2=\langle \sigma \rangle  \;\text{  alors  }\; \psi(1)(\tau^k)=\tau^k, \psi(\sigma)(\tau^k)=\tau^{-k}  \quad \forall k  \in \{0,1,2,..., n-1\}.

Une présentation est alors :

\left\langle\sigma,\tau\mid\sigma^2,\tau^n,\sigma\tau\sigma^{-1}\tau\right\rangle.

Plus explicitement les générateurs sont σ, τ et les relations qu'ils vérifient sont de la forme :

\sigma^2=1, \quad \tau^n=1, \quad \sigma\tau\sigma^{-1}=\tau^{-1}.

On peut ainsi dresser une liste complète des éléments du groupe :

1,\tau,\tau^2,\dots,\tau^{n-1},\sigma,\sigma\tau,\sigma\tau^2,\dots,\sigma\tau^{n-1}

Une présentation alternative, où μ=τσ dans le système de générateurs de la présentation précédente, est :

\left\langle\sigma,\mu\mid\sigma^2,\mu^2,(\mu\sigma)^n\right\rangle.

Plus explicitement les générateurs sont σ, μ et les relations qu'ils vérifient sont de la forme :

\sigma^2=1, \quad \mu^2=1, \quad (\mu\sigma)^n=1.

On voit ainsi que le groupe diédral admet un système de deux générateurs distincts tous deux d'ordre 2. Les groupes diédraux sont les seuls groupes finis possédant cette propriété[1].

Le groupe diédral d'ordre 2n peut aussi être vu comme le groupe des automorphismes du graphe constitué seulement d'un cycle avec n sommets (si n ≥ 3).

Interprétation géométrique[modifier | modifier le code]

On peut définir de la façon suivante une représentation du groupe diédral Dn :

\varphi : D_n\to \mathrm{GL}_2(\R)
\text{avec}\quad\varphi(\tau)=\begin{pmatrix}\cos(2\pi/n)& -\sin(2\pi/n)\\ \sin(2\pi/n)& \cos(2\pi/n)\end{pmatrix}\quad\text{et}\quad\varphi(\sigma)=\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}.

Cette représentation est en fait à valeurs dans le groupe orthogonal O(2,R).

On reconnaît que la matrice φ(τ) est une matrice de rotation d'angle 2π/n et la matrice φ(σ) une matrice de réflexion. Ces transformations laissent effectivement invariant le polygone régulier centré en l'origine à n côtés.

Graphe de cycles[modifier | modifier le code]

Les graphes de cycles de groupes diédraux sont constitués d'un cycle à n éléments et de cycles à 2 éléments. Le sommet sombre dans les graphes de cycle ci-dessous de divers groupes diédraux représente l'élément identité, et les autres sommets sont les autres éléments du groupe. Un cycle est constitué des puissances successives de l'un ou l'autre élément connecté à l'élément identité.


GroupDiagramMiniD4.png
GroupDiagramMiniD6.png
GroupDiagramMiniD8.png
GroupDiagramMiniD10.png
GroupDiagramMiniD12.png
GroupDiagramMiniD14.png
D2 D3 D4 D5 D6 D7

Propriétés[modifier | modifier le code]

Le sous-ensemble des rotations {1, τ, τ2, …, τn–1} est un sous-groupe normal.

Certaines propriétés des groupes diédraux Dn avec n ≥ 3 dépendent de la parité de n. Elles peuvent souvent facilement être déduites de la représentation géométrique de ce groupe.

  • Le centre de Dn est constitué seulement de l'identité si n est impair, mais si n est pair le centre a deux éléments : l'identité et l'élément τn/2.
  • Pour n impair, le groupe D2n est isomorphe au produit direct de Dn et d'un groupe cyclique d'ordre 2. Cet isomorphisme est donné par :
    \sigma^h\tau^{k+\epsilon n}\mapsto(\sigma^h\tau^k,\epsilon)
    D2n est l'ensemble de départ Dn*C2 celui d'arrivée, h et \epsilon étant définis modulo 2, et k modulo n. Les générateurs des groupes diédraux sont choisis comme dans la première partie de l'article.
  • Toutes les réflexions sont conjuguées les unes les autres dans le cas où n est impair, mais elles sont contenues dans deux classes de conjugaison si n est pair.
  • Si m divise n, alors Dn a n / m sous-groupes de type Dm, et un sous-groupe cyclique Cm. Par conséquent, le nombre total de sous-groupes de Dn (n ≥ 1), est égal à d (n) + σ (n), où d (n) est le nombre de diviseurs positifs de n et σ (n) est la somme des diviseurs positifs de n (voir liste des petits groupes pour les cas n ≤ 8)
  • Un groupe diédral est nilpotent si et seulement si son ordre est une puissance de deux[2]. Un groupe diédral d'ordre 2r, avec r > 1, est nilpotent de classe r – 1[3]. D'autre part, la classe de résolubilité d'un groupe diédral est ≤ 2. (En effet, le groupe diédral D2n admet un sous-groupe cyclique Cn d'indice 2 et donc normal ; le groupe quotient D2n/Cn, étant d'ordre 2, est commutatif, donc Cn contient le dérivé de D2n, donc ce dérivé est commutatif, donc la classe de résolubilité de D2n est ≤ 2.) Les groupes diédraux illustrent ainsi le fait que la classe de nilpotence d'un groupe nilpotent ne peut pas être majorée en fonction de sa classe de résolubilité[4] (alors que sa classe de résolubilité peut être majorée en fonction de sa classe de nilpotence).

Représentations[modifier | modifier le code]

Si n est impair, le groupe Dn admet 2 représentations irréductibles complexes de degré 1 :

\sigma\mapsto (-1)^k\;\tau\mapsto 1\;k\in\{0,1\}.

En revanche, si n est pair, il existe 4 représentations irréductibles de degré 1 :

\sigma\mapsto (-1)^k\;\tau\mapsto (-1)^h\;k\in\{0,1\}\;h\in\{0,1\}.

Les autres représentations irréductibles sont toutes de degré 2 ; elles sont en nombre \frac{n-1}2 si n est impair, respectivement \frac n2-1 si n est pair. On peut les définir comme suit :

\tau\mapsto\begin{pmatrix} \omega^h & 0 \\ 0 & \omega^{-h}\end{pmatrix}\quad\mbox{ et }\quad\sigma\mapsto\begin{pmatrix} 0 & -1 \\ -1 & 0\end{pmatrix}

ω désigne une racine primitive ne de l'unité, et h parcourt les entiers compris entre 1 et n–1. On peut vérifier que deux telles représentations sont isomorphes seulement pour h1 et h2 vérifiant h1+h2=n. On obtient alors le nombre annoncé de représentations irréductibles de degré 2 non isomorphes, et donc toutes les représentations irréductibles du groupe diédral, par la formule liant le nombre de représentations irréductibles à l'ordre du groupe.

Groupe diédral infini[modifier | modifier le code]

En plus des groupes diédraux finis, on trouve le groupe diédral infini D.

Tout groupe diédral est généré par une rotation r et une réflexion. Si la rotation est un multiple rationnel d’une rotation totale, alors il existe un entier n tel que rn soit l’identité, et on est en présence d’un groupe diédral fini d’ordre 2n. Mais si la rotation n’est pas un multiple rationnel d’une rotation totale, alors il n’existe pas de tel n et le groupe résultant a un nombre infini d’éléments ; on le note D. Il admet pour présentations

\langle r, f \mid f^2 = 1, frf = r^{-1} \rangle\quad\text{et}\quad\langle x, y \mid x^2 = y^2 = 1 \rangle

et est donc isomorphe à la fois au produit semi-direct de Z par C2 et au produit libre C2 * C2. Il s’agit du groupe d'automorphismes du graphe constitué d’un chemin infini vers les deux extrémités. De façon équivalente, il s’agit du groupe des isométries de Z.

Groupe diédral généralisé[modifier | modifier le code]

Pour tout groupe abélien H, le groupe diédral généralisé de H, noté Dih(H), est le produit semi-direct de H par C2, l'action de C2 sur H étant l'inversion, i.e.

\mathrm{Dih}(H) = H \rtimes_\varphi C_2,

où φ(0) est l'application identité et φ(1) l'inversion des éléments.

On obtient ainsi, si H et C2 sont tous deux notés additivement :

(h1, 0) * (h2, t2) = (h1 + h2, t2)
(h1, 1) * (h2, t2) = (h1h2, 1 + t2)

pour tous h1, h2 dans H et t2 dans C2.

(Si C2 est noté multiplicativement, ces deux formules se résument en (h1, t1) * (h2, t2) = (h1 + t1h2, t1t2) .)

Le sous-groupe de Dih(H) constitué des éléments de la forme (h, 0) est un sous-groupe normal d'indice 2, isomorphe à H. Quant aux éléments de la forme (h, 1), chacun est son propre inverse.

Les classes de conjugaison sont

  • les ensembles {(h,0 ), (−h,0 )}
  • les ensembles {(h + k + k, 1) | k dans H }

Ainsi, pour tout sous-groupe M de H, les éléments correspondants (m,0) forment aussi un sous-groupe normal de Dih(H) isomorphe à M, et l'on a :

Dih(H) / M = Dih ( H / M ).

Exemples :

  • Dn = Dih(Cn).
    • Si n est pair il y a deux ensembles de la forme {(h + k + k, 1) | k dans H }, et chacun d'eux engendre un sous-groupe normal isomorphe à Dn/2. Ce sont deux sous-groupes du groupe des isométries d'un n-gone régulier, isomorphes mais distincts : tous deux contiennent les mêmes rotations, mais dans l'un des deux sous-groupes, chaque réflexion fixe deux des sommets, tandis que dans l'autre, les réflexions ne fixent aucun sommet.
    • Si n est impair il n'y a qu'un ensemble de la forme {(h + k + k, 1) | k dans H }.
  • D = Dih(Z) ; il y a deux ensembles de la forme {(h + k + k, 1) | k dans H }, et chacun d'eux engendre un sous-groupe isomorphe à D. Ce sont deux sous-groupes du groupe des isométries de Z, isomorphes mais distincts : tous deux contiennent les mêmes translations (par les entiers pairs), mais dans l'un des deux sous-groupes, chaque réflexion a un point fixe entier (son centre), tandis que dans l'autre, les réflexions sont sans point fixe entier (leurs centres sont des demi-entiers).
  • Dih(S1) est isomorphe au groupe orthogonal O(2,R) des isométries du plan euclidien qui fixent l'origine ou de façon équivalente, au groupe des isométries du cercle. Les rotations forment le groupe SO(2,R), isomorphe au groupe additif R/Z, et également isomorphe au groupe multiplicatif S1 égal au cercle unité (constitué des nombres complexes de module 1). Dans ce dernier cas, l'une des réflexions (qui, avec les rotations, engendre tout le groupe), est la conjugaison complexe. Les sous-groupes normaux propres ne contiennent que des rotations. Les sous-groupes normaux discrets sont, pour chaque entier n, un sous-groupe cyclique d'ordre n, et les quotients sont isomorphes au même groupe Dih(S1).
  • Dih(Rn ) est le groupe des translations et symétries centrales de Rn (qui, si n > 1 n'épuisent pas toutes les isométries).
  • Dih(H) pour n'importe quel sous-groupe de Rn, par exemple un groupe discret ; dans ce cas, s'il agit dans les n directions, c'est un réseau.

Dih(H) est abélien si et seulement si le produit semi-direct est direct, c'est-à-dire si et seulement si chaque élément de H est son propre inverse, i.e. H est un 2-groupe abélien élémentaire (en) : Dih(C2k) = C2k+1.

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Dihedral group » (voir la liste des auteurs)

  1. (en) Joseph J. Rotman, An Introduction to the Theory of Groups [détail de l’édition], 4e éd., tirage de 1999, théor. 3.32, p. 68.
  2. Rotman 1999, exerc. 5.41, p. 118.
  3. (en) C. Charles Richard Leedham-Green (en) et Susan R. McKay, The Structure of Groups of Prime Power Order, Oxford University Press, 2002, cor. 3.3.4, (iii), p. 60-61.
  4. (en) D. J. S. Robinson (de), A Course in the Theory of Groups, Springer,‎ 1996, 2e éd. (lire en ligne), exerc. 5.1.9, p. 128.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]